|
|
|
import datetime |
|
import json |
|
import logging |
|
import os |
|
import time |
|
from collections import defaultdict |
|
from contextlib import contextmanager |
|
from typing import Optional |
|
import torch |
|
from fvcore.common.history_buffer import HistoryBuffer |
|
|
|
from annotator.oneformer.detectron2.utils.file_io import PathManager |
|
|
|
__all__ = [ |
|
"get_event_storage", |
|
"JSONWriter", |
|
"TensorboardXWriter", |
|
"CommonMetricPrinter", |
|
"EventStorage", |
|
] |
|
|
|
_CURRENT_STORAGE_STACK = [] |
|
|
|
|
|
def get_event_storage(): |
|
""" |
|
Returns: |
|
The :class:`EventStorage` object that's currently being used. |
|
Throws an error if no :class:`EventStorage` is currently enabled. |
|
""" |
|
assert len( |
|
_CURRENT_STORAGE_STACK |
|
), "get_event_storage() has to be called inside a 'with EventStorage(...)' context!" |
|
return _CURRENT_STORAGE_STACK[-1] |
|
|
|
|
|
class EventWriter: |
|
""" |
|
Base class for writers that obtain events from :class:`EventStorage` and process them. |
|
""" |
|
|
|
def write(self): |
|
raise NotImplementedError |
|
|
|
def close(self): |
|
pass |
|
|
|
|
|
class JSONWriter(EventWriter): |
|
""" |
|
Write scalars to a json file. |
|
|
|
It saves scalars as one json per line (instead of a big json) for easy parsing. |
|
|
|
Examples parsing such a json file: |
|
:: |
|
$ cat metrics.json | jq -s '.[0:2]' |
|
[ |
|
{ |
|
"data_time": 0.008433341979980469, |
|
"iteration": 19, |
|
"loss": 1.9228371381759644, |
|
"loss_box_reg": 0.050025828182697296, |
|
"loss_classifier": 0.5316952466964722, |
|
"loss_mask": 0.7236229181289673, |
|
"loss_rpn_box": 0.0856662318110466, |
|
"loss_rpn_cls": 0.48198649287223816, |
|
"lr": 0.007173333333333333, |
|
"time": 0.25401854515075684 |
|
}, |
|
{ |
|
"data_time": 0.007216215133666992, |
|
"iteration": 39, |
|
"loss": 1.282649278640747, |
|
"loss_box_reg": 0.06222952902317047, |
|
"loss_classifier": 0.30682939291000366, |
|
"loss_mask": 0.6970193982124329, |
|
"loss_rpn_box": 0.038663312792778015, |
|
"loss_rpn_cls": 0.1471673548221588, |
|
"lr": 0.007706666666666667, |
|
"time": 0.2490077018737793 |
|
} |
|
] |
|
|
|
$ cat metrics.json | jq '.loss_mask' |
|
0.7126231789588928 |
|
0.689423680305481 |
|
0.6776131987571716 |
|
... |
|
|
|
""" |
|
|
|
def __init__(self, json_file, window_size=20): |
|
""" |
|
Args: |
|
json_file (str): path to the json file. New data will be appended if the file exists. |
|
window_size (int): the window size of median smoothing for the scalars whose |
|
`smoothing_hint` are True. |
|
""" |
|
self._file_handle = PathManager.open(json_file, "a") |
|
self._window_size = window_size |
|
self._last_write = -1 |
|
|
|
def write(self): |
|
storage = get_event_storage() |
|
to_save = defaultdict(dict) |
|
|
|
for k, (v, iter) in storage.latest_with_smoothing_hint(self._window_size).items(): |
|
|
|
if iter <= self._last_write: |
|
continue |
|
to_save[iter][k] = v |
|
if len(to_save): |
|
all_iters = sorted(to_save.keys()) |
|
self._last_write = max(all_iters) |
|
|
|
for itr, scalars_per_iter in to_save.items(): |
|
scalars_per_iter["iteration"] = itr |
|
self._file_handle.write(json.dumps(scalars_per_iter, sort_keys=True) + "\n") |
|
self._file_handle.flush() |
|
try: |
|
os.fsync(self._file_handle.fileno()) |
|
except AttributeError: |
|
pass |
|
|
|
def close(self): |
|
self._file_handle.close() |
|
|
|
|
|
class TensorboardXWriter(EventWriter): |
|
""" |
|
Write all scalars to a tensorboard file. |
|
""" |
|
|
|
def __init__(self, log_dir: str, window_size: int = 20, **kwargs): |
|
""" |
|
Args: |
|
log_dir (str): the directory to save the output events |
|
window_size (int): the scalars will be median-smoothed by this window size |
|
|
|
kwargs: other arguments passed to `torch.utils.tensorboard.SummaryWriter(...)` |
|
""" |
|
self._window_size = window_size |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
self._writer = SummaryWriter(log_dir, **kwargs) |
|
self._last_write = -1 |
|
|
|
def write(self): |
|
storage = get_event_storage() |
|
new_last_write = self._last_write |
|
for k, (v, iter) in storage.latest_with_smoothing_hint(self._window_size).items(): |
|
if iter > self._last_write: |
|
self._writer.add_scalar(k, v, iter) |
|
new_last_write = max(new_last_write, iter) |
|
self._last_write = new_last_write |
|
|
|
|
|
|
|
if len(storage._vis_data) >= 1: |
|
for img_name, img, step_num in storage._vis_data: |
|
self._writer.add_image(img_name, img, step_num) |
|
|
|
|
|
|
|
|
|
|
|
storage.clear_images() |
|
|
|
if len(storage._histograms) >= 1: |
|
for params in storage._histograms: |
|
self._writer.add_histogram_raw(**params) |
|
storage.clear_histograms() |
|
|
|
def close(self): |
|
if hasattr(self, "_writer"): |
|
self._writer.close() |
|
|
|
|
|
class CommonMetricPrinter(EventWriter): |
|
""" |
|
Print **common** metrics to the terminal, including |
|
iteration time, ETA, memory, all losses, and the learning rate. |
|
It also applies smoothing using a window of 20 elements. |
|
|
|
It's meant to print common metrics in common ways. |
|
To print something in more customized ways, please implement a similar printer by yourself. |
|
""" |
|
|
|
def __init__(self, max_iter: Optional[int] = None, window_size: int = 20): |
|
""" |
|
Args: |
|
max_iter: the maximum number of iterations to train. |
|
Used to compute ETA. If not given, ETA will not be printed. |
|
window_size (int): the losses will be median-smoothed by this window size |
|
""" |
|
self.logger = logging.getLogger(__name__) |
|
self._max_iter = max_iter |
|
self._window_size = window_size |
|
self._last_write = None |
|
|
|
def _get_eta(self, storage) -> Optional[str]: |
|
if self._max_iter is None: |
|
return "" |
|
iteration = storage.iter |
|
try: |
|
eta_seconds = storage.history("time").median(1000) * (self._max_iter - iteration - 1) |
|
storage.put_scalar("eta_seconds", eta_seconds, smoothing_hint=False) |
|
return str(datetime.timedelta(seconds=int(eta_seconds))) |
|
except KeyError: |
|
|
|
eta_string = None |
|
if self._last_write is not None: |
|
estimate_iter_time = (time.perf_counter() - self._last_write[1]) / ( |
|
iteration - self._last_write[0] |
|
) |
|
eta_seconds = estimate_iter_time * (self._max_iter - iteration - 1) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
self._last_write = (iteration, time.perf_counter()) |
|
return eta_string |
|
|
|
def write(self): |
|
storage = get_event_storage() |
|
iteration = storage.iter |
|
if iteration == self._max_iter: |
|
|
|
|
|
|
|
return |
|
|
|
try: |
|
avg_data_time = storage.history("data_time").avg( |
|
storage.count_samples("data_time", self._window_size) |
|
) |
|
last_data_time = storage.history("data_time").latest() |
|
except KeyError: |
|
|
|
|
|
avg_data_time = None |
|
last_data_time = None |
|
try: |
|
avg_iter_time = storage.history("time").global_avg() |
|
last_iter_time = storage.history("time").latest() |
|
except KeyError: |
|
avg_iter_time = None |
|
last_iter_time = None |
|
try: |
|
lr = "{:.5g}".format(storage.history("lr").latest()) |
|
except KeyError: |
|
lr = "N/A" |
|
|
|
eta_string = self._get_eta(storage) |
|
|
|
if torch.cuda.is_available(): |
|
max_mem_mb = torch.cuda.max_memory_allocated() / 1024.0 / 1024.0 |
|
else: |
|
max_mem_mb = None |
|
|
|
|
|
self.logger.info( |
|
str.format( |
|
" {eta}iter: {iter} {losses} {non_losses} {avg_time}{last_time}" |
|
+ "{avg_data_time}{last_data_time} lr: {lr} {memory}", |
|
eta=f"eta: {eta_string} " if eta_string else "", |
|
iter=iteration, |
|
losses=" ".join( |
|
[ |
|
"{}: {:.4g}".format( |
|
k, v.median(storage.count_samples(k, self._window_size)) |
|
) |
|
for k, v in storage.histories().items() |
|
if "loss" in k |
|
] |
|
), |
|
non_losses=" ".join( |
|
[ |
|
"{}: {:.4g}".format( |
|
k, v.median(storage.count_samples(k, self._window_size)) |
|
) |
|
for k, v in storage.histories().items() |
|
if "[metric]" in k |
|
] |
|
), |
|
avg_time="time: {:.4f} ".format(avg_iter_time) |
|
if avg_iter_time is not None |
|
else "", |
|
last_time="last_time: {:.4f} ".format(last_iter_time) |
|
if last_iter_time is not None |
|
else "", |
|
avg_data_time="data_time: {:.4f} ".format(avg_data_time) |
|
if avg_data_time is not None |
|
else "", |
|
last_data_time="last_data_time: {:.4f} ".format(last_data_time) |
|
if last_data_time is not None |
|
else "", |
|
lr=lr, |
|
memory="max_mem: {:.0f}M".format(max_mem_mb) if max_mem_mb is not None else "", |
|
) |
|
) |
|
|
|
|
|
class EventStorage: |
|
""" |
|
The user-facing class that provides metric storage functionalities. |
|
|
|
In the future we may add support for storing / logging other types of data if needed. |
|
""" |
|
|
|
def __init__(self, start_iter=0): |
|
""" |
|
Args: |
|
start_iter (int): the iteration number to start with |
|
""" |
|
self._history = defaultdict(HistoryBuffer) |
|
self._smoothing_hints = {} |
|
self._latest_scalars = {} |
|
self._iter = start_iter |
|
self._current_prefix = "" |
|
self._vis_data = [] |
|
self._histograms = [] |
|
|
|
def put_image(self, img_name, img_tensor): |
|
""" |
|
Add an `img_tensor` associated with `img_name`, to be shown on |
|
tensorboard. |
|
|
|
Args: |
|
img_name (str): The name of the image to put into tensorboard. |
|
img_tensor (torch.Tensor or numpy.array): An `uint8` or `float` |
|
Tensor of shape `[channel, height, width]` where `channel` is |
|
3. The image format should be RGB. The elements in img_tensor |
|
can either have values in [0, 1] (float32) or [0, 255] (uint8). |
|
The `img_tensor` will be visualized in tensorboard. |
|
""" |
|
self._vis_data.append((img_name, img_tensor, self._iter)) |
|
|
|
def put_scalar(self, name, value, smoothing_hint=True): |
|
""" |
|
Add a scalar `value` to the `HistoryBuffer` associated with `name`. |
|
|
|
Args: |
|
smoothing_hint (bool): a 'hint' on whether this scalar is noisy and should be |
|
smoothed when logged. The hint will be accessible through |
|
:meth:`EventStorage.smoothing_hints`. A writer may ignore the hint |
|
and apply custom smoothing rule. |
|
|
|
It defaults to True because most scalars we save need to be smoothed to |
|
provide any useful signal. |
|
""" |
|
name = self._current_prefix + name |
|
history = self._history[name] |
|
value = float(value) |
|
history.update(value, self._iter) |
|
self._latest_scalars[name] = (value, self._iter) |
|
|
|
existing_hint = self._smoothing_hints.get(name) |
|
if existing_hint is not None: |
|
assert ( |
|
existing_hint == smoothing_hint |
|
), "Scalar {} was put with a different smoothing_hint!".format(name) |
|
else: |
|
self._smoothing_hints[name] = smoothing_hint |
|
|
|
def put_scalars(self, *, smoothing_hint=True, **kwargs): |
|
""" |
|
Put multiple scalars from keyword arguments. |
|
|
|
Examples: |
|
|
|
storage.put_scalars(loss=my_loss, accuracy=my_accuracy, smoothing_hint=True) |
|
""" |
|
for k, v in kwargs.items(): |
|
self.put_scalar(k, v, smoothing_hint=smoothing_hint) |
|
|
|
def put_histogram(self, hist_name, hist_tensor, bins=1000): |
|
""" |
|
Create a histogram from a tensor. |
|
|
|
Args: |
|
hist_name (str): The name of the histogram to put into tensorboard. |
|
hist_tensor (torch.Tensor): A Tensor of arbitrary shape to be converted |
|
into a histogram. |
|
bins (int): Number of histogram bins. |
|
""" |
|
ht_min, ht_max = hist_tensor.min().item(), hist_tensor.max().item() |
|
|
|
|
|
hist_counts = torch.histc(hist_tensor, bins=bins) |
|
hist_edges = torch.linspace(start=ht_min, end=ht_max, steps=bins + 1, dtype=torch.float32) |
|
|
|
|
|
hist_params = dict( |
|
tag=hist_name, |
|
min=ht_min, |
|
max=ht_max, |
|
num=len(hist_tensor), |
|
sum=float(hist_tensor.sum()), |
|
sum_squares=float(torch.sum(hist_tensor**2)), |
|
bucket_limits=hist_edges[1:].tolist(), |
|
bucket_counts=hist_counts.tolist(), |
|
global_step=self._iter, |
|
) |
|
self._histograms.append(hist_params) |
|
|
|
def history(self, name): |
|
""" |
|
Returns: |
|
HistoryBuffer: the scalar history for name |
|
""" |
|
ret = self._history.get(name, None) |
|
if ret is None: |
|
raise KeyError("No history metric available for {}!".format(name)) |
|
return ret |
|
|
|
def histories(self): |
|
""" |
|
Returns: |
|
dict[name -> HistoryBuffer]: the HistoryBuffer for all scalars |
|
""" |
|
return self._history |
|
|
|
def latest(self): |
|
""" |
|
Returns: |
|
dict[str -> (float, int)]: mapping from the name of each scalar to the most |
|
recent value and the iteration number its added. |
|
""" |
|
return self._latest_scalars |
|
|
|
def latest_with_smoothing_hint(self, window_size=20): |
|
""" |
|
Similar to :meth:`latest`, but the returned values |
|
are either the un-smoothed original latest value, |
|
or a median of the given window_size, |
|
depend on whether the smoothing_hint is True. |
|
|
|
This provides a default behavior that other writers can use. |
|
|
|
Note: All scalars saved in the past `window_size` iterations are used for smoothing. |
|
This is different from the `window_size` definition in HistoryBuffer. |
|
Use :meth:`get_history_window_size` to get the `window_size` used in HistoryBuffer. |
|
""" |
|
result = {} |
|
for k, (v, itr) in self._latest_scalars.items(): |
|
result[k] = ( |
|
self._history[k].median(self.count_samples(k, window_size)) |
|
if self._smoothing_hints[k] |
|
else v, |
|
itr, |
|
) |
|
return result |
|
|
|
def count_samples(self, name, window_size=20): |
|
""" |
|
Return the number of samples logged in the past `window_size` iterations. |
|
""" |
|
samples = 0 |
|
data = self._history[name].values() |
|
for _, iter_ in reversed(data): |
|
if iter_ > data[-1][1] - window_size: |
|
samples += 1 |
|
else: |
|
break |
|
return samples |
|
|
|
def smoothing_hints(self): |
|
""" |
|
Returns: |
|
dict[name -> bool]: the user-provided hint on whether the scalar |
|
is noisy and needs smoothing. |
|
""" |
|
return self._smoothing_hints |
|
|
|
def step(self): |
|
""" |
|
User should either: (1) Call this function to increment storage.iter when needed. Or |
|
(2) Set `storage.iter` to the correct iteration number before each iteration. |
|
|
|
The storage will then be able to associate the new data with an iteration number. |
|
""" |
|
self._iter += 1 |
|
|
|
@property |
|
def iter(self): |
|
""" |
|
Returns: |
|
int: The current iteration number. When used together with a trainer, |
|
this is ensured to be the same as trainer.iter. |
|
""" |
|
return self._iter |
|
|
|
@iter.setter |
|
def iter(self, val): |
|
self._iter = int(val) |
|
|
|
@property |
|
def iteration(self): |
|
|
|
return self._iter |
|
|
|
def __enter__(self): |
|
_CURRENT_STORAGE_STACK.append(self) |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
assert _CURRENT_STORAGE_STACK[-1] == self |
|
_CURRENT_STORAGE_STACK.pop() |
|
|
|
@contextmanager |
|
def name_scope(self, name): |
|
""" |
|
Yields: |
|
A context within which all the events added to this storage |
|
will be prefixed by the name scope. |
|
""" |
|
old_prefix = self._current_prefix |
|
self._current_prefix = name.rstrip("/") + "/" |
|
yield |
|
self._current_prefix = old_prefix |
|
|
|
def clear_images(self): |
|
""" |
|
Delete all the stored images for visualization. This should be called |
|
after images are written to tensorboard. |
|
""" |
|
self._vis_data = [] |
|
|
|
def clear_histograms(self): |
|
""" |
|
Delete all the stored histograms for visualization. |
|
This should be called after histograms are written to tensorboard. |
|
""" |
|
self._histograms = [] |
|
|