|
|
|
|
|
|
|
import logging |
|
import numpy as np |
|
import time |
|
import weakref |
|
from typing import List, Mapping, Optional |
|
import torch |
|
from torch.nn.parallel import DataParallel, DistributedDataParallel |
|
|
|
import annotator.oneformer.detectron2.utils.comm as comm |
|
from annotator.oneformer.detectron2.utils.events import EventStorage, get_event_storage |
|
from annotator.oneformer.detectron2.utils.logger import _log_api_usage |
|
|
|
__all__ = ["HookBase", "TrainerBase", "SimpleTrainer", "AMPTrainer"] |
|
|
|
|
|
class HookBase: |
|
""" |
|
Base class for hooks that can be registered with :class:`TrainerBase`. |
|
|
|
Each hook can implement 4 methods. The way they are called is demonstrated |
|
in the following snippet: |
|
:: |
|
hook.before_train() |
|
for iter in range(start_iter, max_iter): |
|
hook.before_step() |
|
trainer.run_step() |
|
hook.after_step() |
|
iter += 1 |
|
hook.after_train() |
|
|
|
Notes: |
|
1. In the hook method, users can access ``self.trainer`` to access more |
|
properties about the context (e.g., model, current iteration, or config |
|
if using :class:`DefaultTrainer`). |
|
|
|
2. A hook that does something in :meth:`before_step` can often be |
|
implemented equivalently in :meth:`after_step`. |
|
If the hook takes non-trivial time, it is strongly recommended to |
|
implement the hook in :meth:`after_step` instead of :meth:`before_step`. |
|
The convention is that :meth:`before_step` should only take negligible time. |
|
|
|
Following this convention will allow hooks that do care about the difference |
|
between :meth:`before_step` and :meth:`after_step` (e.g., timer) to |
|
function properly. |
|
|
|
""" |
|
|
|
trainer: "TrainerBase" = None |
|
""" |
|
A weak reference to the trainer object. Set by the trainer when the hook is registered. |
|
""" |
|
|
|
def before_train(self): |
|
""" |
|
Called before the first iteration. |
|
""" |
|
pass |
|
|
|
def after_train(self): |
|
""" |
|
Called after the last iteration. |
|
""" |
|
pass |
|
|
|
def before_step(self): |
|
""" |
|
Called before each iteration. |
|
""" |
|
pass |
|
|
|
def after_backward(self): |
|
""" |
|
Called after the backward pass of each iteration. |
|
""" |
|
pass |
|
|
|
def after_step(self): |
|
""" |
|
Called after each iteration. |
|
""" |
|
pass |
|
|
|
def state_dict(self): |
|
""" |
|
Hooks are stateless by default, but can be made checkpointable by |
|
implementing `state_dict` and `load_state_dict`. |
|
""" |
|
return {} |
|
|
|
|
|
class TrainerBase: |
|
""" |
|
Base class for iterative trainer with hooks. |
|
|
|
The only assumption we made here is: the training runs in a loop. |
|
A subclass can implement what the loop is. |
|
We made no assumptions about the existence of dataloader, optimizer, model, etc. |
|
|
|
Attributes: |
|
iter(int): the current iteration. |
|
|
|
start_iter(int): The iteration to start with. |
|
By convention the minimum possible value is 0. |
|
|
|
max_iter(int): The iteration to end training. |
|
|
|
storage(EventStorage): An EventStorage that's opened during the course of training. |
|
""" |
|
|
|
def __init__(self) -> None: |
|
self._hooks: List[HookBase] = [] |
|
self.iter: int = 0 |
|
self.start_iter: int = 0 |
|
self.max_iter: int |
|
self.storage: EventStorage |
|
_log_api_usage("trainer." + self.__class__.__name__) |
|
|
|
def register_hooks(self, hooks: List[Optional[HookBase]]) -> None: |
|
""" |
|
Register hooks to the trainer. The hooks are executed in the order |
|
they are registered. |
|
|
|
Args: |
|
hooks (list[Optional[HookBase]]): list of hooks |
|
""" |
|
hooks = [h for h in hooks if h is not None] |
|
for h in hooks: |
|
assert isinstance(h, HookBase) |
|
|
|
|
|
|
|
|
|
h.trainer = weakref.proxy(self) |
|
self._hooks.extend(hooks) |
|
|
|
def train(self, start_iter: int, max_iter: int): |
|
""" |
|
Args: |
|
start_iter, max_iter (int): See docs above |
|
""" |
|
logger = logging.getLogger(__name__) |
|
logger.info("Starting training from iteration {}".format(start_iter)) |
|
|
|
self.iter = self.start_iter = start_iter |
|
self.max_iter = max_iter |
|
|
|
with EventStorage(start_iter) as self.storage: |
|
try: |
|
self.before_train() |
|
for self.iter in range(start_iter, max_iter): |
|
self.before_step() |
|
self.run_step() |
|
self.after_step() |
|
|
|
|
|
|
|
self.iter += 1 |
|
except Exception: |
|
logger.exception("Exception during training:") |
|
raise |
|
finally: |
|
self.after_train() |
|
|
|
def before_train(self): |
|
for h in self._hooks: |
|
h.before_train() |
|
|
|
def after_train(self): |
|
self.storage.iter = self.iter |
|
for h in self._hooks: |
|
h.after_train() |
|
|
|
def before_step(self): |
|
|
|
|
|
self.storage.iter = self.iter |
|
|
|
for h in self._hooks: |
|
h.before_step() |
|
|
|
def after_backward(self): |
|
for h in self._hooks: |
|
h.after_backward() |
|
|
|
def after_step(self): |
|
for h in self._hooks: |
|
h.after_step() |
|
|
|
def run_step(self): |
|
raise NotImplementedError |
|
|
|
def state_dict(self): |
|
ret = {"iteration": self.iter} |
|
hooks_state = {} |
|
for h in self._hooks: |
|
sd = h.state_dict() |
|
if sd: |
|
name = type(h).__qualname__ |
|
if name in hooks_state: |
|
|
|
continue |
|
hooks_state[name] = sd |
|
if hooks_state: |
|
ret["hooks"] = hooks_state |
|
return ret |
|
|
|
def load_state_dict(self, state_dict): |
|
logger = logging.getLogger(__name__) |
|
self.iter = state_dict["iteration"] |
|
for key, value in state_dict.get("hooks", {}).items(): |
|
for h in self._hooks: |
|
try: |
|
name = type(h).__qualname__ |
|
except AttributeError: |
|
continue |
|
if name == key: |
|
h.load_state_dict(value) |
|
break |
|
else: |
|
logger.warning(f"Cannot find the hook '{key}', its state_dict is ignored.") |
|
|
|
|
|
class SimpleTrainer(TrainerBase): |
|
""" |
|
A simple trainer for the most common type of task: |
|
single-cost single-optimizer single-data-source iterative optimization, |
|
optionally using data-parallelism. |
|
It assumes that every step, you: |
|
|
|
1. Compute the loss with a data from the data_loader. |
|
2. Compute the gradients with the above loss. |
|
3. Update the model with the optimizer. |
|
|
|
All other tasks during training (checkpointing, logging, evaluation, LR schedule) |
|
are maintained by hooks, which can be registered by :meth:`TrainerBase.register_hooks`. |
|
|
|
If you want to do anything fancier than this, |
|
either subclass TrainerBase and implement your own `run_step`, |
|
or write your own training loop. |
|
""" |
|
|
|
def __init__(self, model, data_loader, optimizer, gather_metric_period=1): |
|
""" |
|
Args: |
|
model: a torch Module. Takes a data from data_loader and returns a |
|
dict of losses. |
|
data_loader: an iterable. Contains data to be used to call model. |
|
optimizer: a torch optimizer. |
|
gather_metric_period: an int. Every gather_metric_period iterations |
|
the metrics are gathered from all the ranks to rank 0 and logged. |
|
""" |
|
super().__init__() |
|
|
|
""" |
|
We set the model to training mode in the trainer. |
|
However it's valid to train a model that's in eval mode. |
|
If you want your model (or a submodule of it) to behave |
|
like evaluation during training, you can overwrite its train() method. |
|
""" |
|
model.train() |
|
|
|
self.model = model |
|
self.data_loader = data_loader |
|
|
|
self._data_loader_iter_obj = None |
|
self.optimizer = optimizer |
|
self.gather_metric_period = gather_metric_period |
|
|
|
def run_step(self): |
|
""" |
|
Implement the standard training logic described above. |
|
""" |
|
assert self.model.training, "[SimpleTrainer] model was changed to eval mode!" |
|
start = time.perf_counter() |
|
""" |
|
If you want to do something with the data, you can wrap the dataloader. |
|
""" |
|
data = next(self._data_loader_iter) |
|
data_time = time.perf_counter() - start |
|
|
|
""" |
|
If you want to do something with the losses, you can wrap the model. |
|
""" |
|
loss_dict = self.model(data) |
|
if isinstance(loss_dict, torch.Tensor): |
|
losses = loss_dict |
|
loss_dict = {"total_loss": loss_dict} |
|
else: |
|
losses = sum(loss_dict.values()) |
|
|
|
""" |
|
If you need to accumulate gradients or do something similar, you can |
|
wrap the optimizer with your custom `zero_grad()` method. |
|
""" |
|
self.optimizer.zero_grad() |
|
losses.backward() |
|
|
|
self.after_backward() |
|
|
|
self._write_metrics(loss_dict, data_time) |
|
|
|
""" |
|
If you need gradient clipping/scaling or other processing, you can |
|
wrap the optimizer with your custom `step()` method. But it is |
|
suboptimal as explained in https://arxiv.org/abs/2006.15704 Sec 3.2.4 |
|
""" |
|
self.optimizer.step() |
|
|
|
@property |
|
def _data_loader_iter(self): |
|
|
|
if self._data_loader_iter_obj is None: |
|
self._data_loader_iter_obj = iter(self.data_loader) |
|
return self._data_loader_iter_obj |
|
|
|
def reset_data_loader(self, data_loader_builder): |
|
""" |
|
Delete and replace the current data loader with a new one, which will be created |
|
by calling `data_loader_builder` (without argument). |
|
""" |
|
del self.data_loader |
|
data_loader = data_loader_builder() |
|
self.data_loader = data_loader |
|
self._data_loader_iter_obj = None |
|
|
|
def _write_metrics( |
|
self, |
|
loss_dict: Mapping[str, torch.Tensor], |
|
data_time: float, |
|
prefix: str = "", |
|
) -> None: |
|
if (self.iter + 1) % self.gather_metric_period == 0: |
|
SimpleTrainer.write_metrics(loss_dict, data_time, prefix) |
|
|
|
@staticmethod |
|
def write_metrics( |
|
loss_dict: Mapping[str, torch.Tensor], |
|
data_time: float, |
|
prefix: str = "", |
|
) -> None: |
|
""" |
|
Args: |
|
loss_dict (dict): dict of scalar losses |
|
data_time (float): time taken by the dataloader iteration |
|
prefix (str): prefix for logging keys |
|
""" |
|
metrics_dict = {k: v.detach().cpu().item() for k, v in loss_dict.items()} |
|
metrics_dict["data_time"] = data_time |
|
|
|
|
|
|
|
|
|
all_metrics_dict = comm.gather(metrics_dict) |
|
|
|
if comm.is_main_process(): |
|
storage = get_event_storage() |
|
|
|
|
|
|
|
data_time = np.max([x.pop("data_time") for x in all_metrics_dict]) |
|
storage.put_scalar("data_time", data_time) |
|
|
|
|
|
metrics_dict = { |
|
k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() |
|
} |
|
total_losses_reduced = sum(metrics_dict.values()) |
|
if not np.isfinite(total_losses_reduced): |
|
raise FloatingPointError( |
|
f"Loss became infinite or NaN at iteration={storage.iter}!\n" |
|
f"loss_dict = {metrics_dict}" |
|
) |
|
|
|
storage.put_scalar("{}total_loss".format(prefix), total_losses_reduced) |
|
if len(metrics_dict) > 1: |
|
storage.put_scalars(**metrics_dict) |
|
|
|
def state_dict(self): |
|
ret = super().state_dict() |
|
ret["optimizer"] = self.optimizer.state_dict() |
|
return ret |
|
|
|
def load_state_dict(self, state_dict): |
|
super().load_state_dict(state_dict) |
|
self.optimizer.load_state_dict(state_dict["optimizer"]) |
|
|
|
|
|
class AMPTrainer(SimpleTrainer): |
|
""" |
|
Like :class:`SimpleTrainer`, but uses PyTorch's native automatic mixed precision |
|
in the training loop. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model, |
|
data_loader, |
|
optimizer, |
|
gather_metric_period=1, |
|
grad_scaler=None, |
|
precision: torch.dtype = torch.float16, |
|
log_grad_scaler: bool = False, |
|
): |
|
""" |
|
Args: |
|
model, data_loader, optimizer, gather_metric_period: same as in :class:`SimpleTrainer`. |
|
grad_scaler: torch GradScaler to automatically scale gradients. |
|
precision: torch.dtype as the target precision to cast to in computations |
|
""" |
|
unsupported = "AMPTrainer does not support single-process multi-device training!" |
|
if isinstance(model, DistributedDataParallel): |
|
assert not (model.device_ids and len(model.device_ids) > 1), unsupported |
|
assert not isinstance(model, DataParallel), unsupported |
|
|
|
super().__init__(model, data_loader, optimizer, gather_metric_period) |
|
|
|
if grad_scaler is None: |
|
from torch.cuda.amp import GradScaler |
|
|
|
grad_scaler = GradScaler() |
|
self.grad_scaler = grad_scaler |
|
self.precision = precision |
|
self.log_grad_scaler = log_grad_scaler |
|
|
|
def run_step(self): |
|
""" |
|
Implement the AMP training logic. |
|
""" |
|
assert self.model.training, "[AMPTrainer] model was changed to eval mode!" |
|
assert torch.cuda.is_available(), "[AMPTrainer] CUDA is required for AMP training!" |
|
from torch.cuda.amp import autocast |
|
|
|
start = time.perf_counter() |
|
data = next(self._data_loader_iter) |
|
data_time = time.perf_counter() - start |
|
|
|
with autocast(dtype=self.precision): |
|
loss_dict = self.model(data) |
|
if isinstance(loss_dict, torch.Tensor): |
|
losses = loss_dict |
|
loss_dict = {"total_loss": loss_dict} |
|
else: |
|
losses = sum(loss_dict.values()) |
|
|
|
self.optimizer.zero_grad() |
|
self.grad_scaler.scale(losses).backward() |
|
|
|
if self.log_grad_scaler: |
|
storage = get_event_storage() |
|
storage.put_scalar("[metric]grad_scaler", self.grad_scaler.get_scale()) |
|
|
|
self.after_backward() |
|
|
|
self._write_metrics(loss_dict, data_time) |
|
|
|
self.grad_scaler.step(self.optimizer) |
|
self.grad_scaler.update() |
|
|
|
def state_dict(self): |
|
ret = super().state_dict() |
|
ret["grad_scaler"] = self.grad_scaler.state_dict() |
|
return ret |
|
|
|
def load_state_dict(self, state_dict): |
|
super().load_state_dict(state_dict) |
|
self.grad_scaler.load_state_dict(state_dict["grad_scaler"]) |
|
|