|
|
|
import numpy as np |
|
|
|
import annotator.mmpkg.mmcv as mmcv |
|
|
|
try: |
|
import torch |
|
except ImportError: |
|
torch = None |
|
|
|
|
|
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True): |
|
"""Convert tensor to 3-channel images. |
|
|
|
Args: |
|
tensor (torch.Tensor): Tensor that contains multiple images, shape ( |
|
N, C, H, W). |
|
mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0). |
|
std (tuple[float], optional): Standard deviation of images. |
|
Defaults to (1, 1, 1). |
|
to_rgb (bool, optional): Whether the tensor was converted to RGB |
|
format in the first place. If so, convert it back to BGR. |
|
Defaults to True. |
|
|
|
Returns: |
|
list[np.ndarray]: A list that contains multiple images. |
|
""" |
|
|
|
if torch is None: |
|
raise RuntimeError('pytorch is not installed') |
|
assert torch.is_tensor(tensor) and tensor.ndim == 4 |
|
assert len(mean) == 3 |
|
assert len(std) == 3 |
|
|
|
num_imgs = tensor.size(0) |
|
mean = np.array(mean, dtype=np.float32) |
|
std = np.array(std, dtype=np.float32) |
|
imgs = [] |
|
for img_id in range(num_imgs): |
|
img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0) |
|
img = mmcv.imdenormalize( |
|
img, mean, std, to_bgr=to_rgb).astype(np.uint8) |
|
imgs.append(np.ascontiguousarray(img)) |
|
return imgs |
|
|