|
import cv2 |
|
import numpy as np |
|
import torch |
|
import os |
|
from modules import devices, shared |
|
from annotator.annotator_path import models_path |
|
from torchvision.transforms import transforms |
|
|
|
|
|
from .leres.depthmap import estimateleres, estimateboost |
|
from .leres.multi_depth_model_woauxi import RelDepthModel |
|
from .leres.net_tools import strip_prefix_if_present |
|
|
|
|
|
from .pix2pix.options.test_options import TestOptions |
|
from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel |
|
|
|
base_model_path = os.path.join(models_path, "leres") |
|
old_modeldir = os.path.dirname(os.path.realpath(__file__)) |
|
|
|
remote_model_path_leres = "https://huggingface.co./lllyasviel/Annotators/resolve/main/res101.pth" |
|
remote_model_path_pix2pix = "https://huggingface.co./lllyasviel/Annotators/resolve/main/latest_net_G.pth" |
|
|
|
model = None |
|
pix2pixmodel = None |
|
|
|
def unload_leres_model(): |
|
global model, pix2pixmodel |
|
if model is not None: |
|
model = model.cpu() |
|
if pix2pixmodel is not None: |
|
pix2pixmodel = pix2pixmodel.unload_network('G') |
|
|
|
|
|
def apply_leres(input_image, thr_a, thr_b, boost=False): |
|
global model, pix2pixmodel |
|
if model is None: |
|
model_path = os.path.join(base_model_path, "res101.pth") |
|
old_model_path = os.path.join(old_modeldir, "res101.pth") |
|
|
|
if os.path.exists(old_model_path): |
|
model_path = old_model_path |
|
elif not os.path.exists(model_path): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(remote_model_path_leres, model_dir=base_model_path) |
|
|
|
if torch.cuda.is_available(): |
|
checkpoint = torch.load(model_path) |
|
else: |
|
checkpoint = torch.load(model_path, map_location=torch.device('cpu')) |
|
|
|
model = RelDepthModel(backbone='resnext101') |
|
model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True) |
|
del checkpoint |
|
|
|
if boost and pix2pixmodel is None: |
|
pix2pixmodel_path = os.path.join(base_model_path, "latest_net_G.pth") |
|
if not os.path.exists(pix2pixmodel_path): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(remote_model_path_pix2pix, model_dir=base_model_path) |
|
|
|
opt = TestOptions().parse() |
|
if not torch.cuda.is_available(): |
|
opt.gpu_ids = [] |
|
pix2pixmodel = Pix2Pix4DepthModel(opt) |
|
pix2pixmodel.save_dir = base_model_path |
|
pix2pixmodel.load_networks('latest') |
|
pix2pixmodel.eval() |
|
|
|
if devices.get_device_for("controlnet").type != 'mps': |
|
model = model.to(devices.get_device_for("controlnet")) |
|
|
|
assert input_image.ndim == 3 |
|
height, width, dim = input_image.shape |
|
|
|
with torch.no_grad(): |
|
|
|
if boost: |
|
depth = estimateboost(input_image, model, 0, pix2pixmodel, max(width, height)) |
|
else: |
|
depth = estimateleres(input_image, model, width, height) |
|
|
|
numbytes=2 |
|
depth_min = depth.min() |
|
depth_max = depth.max() |
|
max_val = (2**(8*numbytes))-1 |
|
|
|
|
|
if depth_max - depth_min > np.finfo("float").eps: |
|
out = max_val * (depth - depth_min) / (depth_max - depth_min) |
|
else: |
|
out = np.zeros(depth.shape) |
|
|
|
|
|
depth_image = out.astype("uint16") |
|
|
|
|
|
depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0)) |
|
|
|
|
|
if thr_a != 0: |
|
thr_a = ((thr_a/100)*255) |
|
depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1] |
|
|
|
|
|
depth_image = cv2.bitwise_not(depth_image) |
|
|
|
|
|
if thr_b != 0: |
|
thr_b = ((thr_b/100)*255) |
|
depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1] |
|
|
|
return depth_image |
|
|