|
checkpoint_config = dict(interval=1) |
|
|
|
log_config = dict( |
|
interval=50, |
|
hooks=[ |
|
dict(type='TextLoggerHook'), |
|
|
|
]) |
|
|
|
dist_params = dict(backend='nccl') |
|
log_level = 'INFO' |
|
load_from = None |
|
resume_from = None |
|
workflow = [('train', 1)] |
|
|
|
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) |
|
optimizer_config = dict(grad_clip=None) |
|
|
|
lr_config = dict( |
|
policy='step', |
|
warmup='linear', |
|
warmup_iters=500, |
|
warmup_ratio=0.001, |
|
step=[8, 11]) |
|
total_epochs = 12 |
|
|
|
model = dict( |
|
type='FasterRCNN', |
|
pretrained='torchvision://resnet50', |
|
backbone=dict( |
|
type='ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
norm_eval=True, |
|
style='pytorch'), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
num_outs=5), |
|
rpn_head=dict( |
|
type='RPNHead', |
|
in_channels=256, |
|
feat_channels=256, |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
scales=[8], |
|
ratios=[0.5, 1.0, 2.0], |
|
strides=[4, 8, 16, 32, 64]), |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[.0, .0, .0, .0], |
|
target_stds=[1.0, 1.0, 1.0, 1.0]), |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), |
|
loss_bbox=dict(type='L1Loss', loss_weight=1.0)), |
|
roi_head=dict( |
|
type='StandardRoIHead', |
|
bbox_roi_extractor=dict( |
|
type='SingleRoIExtractor', |
|
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), |
|
out_channels=256, |
|
featmap_strides=[4, 8, 16, 32]), |
|
bbox_head=dict( |
|
type='Shared2FCBBoxHead', |
|
in_channels=256, |
|
fc_out_channels=1024, |
|
roi_feat_size=7, |
|
num_classes=80, |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0., 0., 0., 0.], |
|
target_stds=[0.1, 0.1, 0.2, 0.2]), |
|
reg_class_agnostic=False, |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), |
|
loss_bbox=dict(type='L1Loss', loss_weight=1.0))), |
|
|
|
train_cfg=dict( |
|
rpn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.7, |
|
neg_iou_thr=0.3, |
|
min_pos_iou=0.3, |
|
match_low_quality=True, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=256, |
|
pos_fraction=0.5, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=False), |
|
allowed_border=-1, |
|
pos_weight=-1, |
|
debug=False), |
|
rpn_proposal=dict( |
|
nms_pre=2000, |
|
max_per_img=1000, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=0), |
|
rcnn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
min_pos_iou=0.5, |
|
match_low_quality=False, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=512, |
|
pos_fraction=0.25, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True), |
|
pos_weight=-1, |
|
debug=False)), |
|
test_cfg=dict( |
|
rpn=dict( |
|
nms_pre=1000, |
|
max_per_img=1000, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=0), |
|
rcnn=dict( |
|
score_thr=0.05, |
|
nms=dict(type='nms', iou_threshold=0.5), |
|
max_per_img=100) |
|
|
|
|
|
)) |
|
|
|
dataset_type = 'CocoDataset' |
|
data_root = 'data/coco' |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
samples_per_gpu=2, |
|
workers_per_gpu=2, |
|
train=dict( |
|
type=dataset_type, |
|
ann_file=f'{data_root}/annotations/instances_train2017.json', |
|
img_prefix=f'{data_root}/train2017/', |
|
pipeline=train_pipeline), |
|
val=dict( |
|
type=dataset_type, |
|
ann_file=f'{data_root}/annotations/instances_val2017.json', |
|
img_prefix=f'{data_root}/val2017/', |
|
pipeline=test_pipeline), |
|
test=dict( |
|
type=dataset_type, |
|
ann_file=f'{data_root}/annotations/instances_val2017.json', |
|
img_prefix=f'{data_root}/val2017/', |
|
pipeline=test_pipeline)) |
|
evaluation = dict(interval=1, metric='bbox') |
|
|