|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
from annotator.util import make_noise_disk, img2mask |
|
|
|
|
|
class ContentShuffleDetector: |
|
def __call__(self, img, h=None, w=None, f=None): |
|
H, W, C = img.shape |
|
if h is None: |
|
h = H |
|
if w is None: |
|
w = W |
|
if f is None: |
|
f = 256 |
|
x = make_noise_disk(h, w, 1, f) * float(W - 1) |
|
y = make_noise_disk(h, w, 1, f) * float(H - 1) |
|
flow = np.concatenate([x, y], axis=2).astype(np.float32) |
|
return cv2.remap(img, flow, None, cv2.INTER_LINEAR) |
|
|
|
|
|
class ColorShuffleDetector: |
|
def __call__(self, img): |
|
H, W, C = img.shape |
|
F = random.randint(64, 384) |
|
A = make_noise_disk(H, W, 3, F) |
|
B = make_noise_disk(H, W, 3, F) |
|
C = (A + B) / 2.0 |
|
A = (C + (A - C) * 3.0).clip(0, 1) |
|
B = (C + (B - C) * 3.0).clip(0, 1) |
|
L = img.astype(np.float32) / 255.0 |
|
Y = A * L + B * (1 - L) |
|
Y -= np.min(Y, axis=(0, 1), keepdims=True) |
|
Y /= np.maximum(np.max(Y, axis=(0, 1), keepdims=True), 1e-5) |
|
Y *= 255.0 |
|
return Y.clip(0, 255).astype(np.uint8) |
|
|
|
|
|
class GrayDetector: |
|
def __call__(self, img): |
|
eps = 1e-5 |
|
X = img.astype(np.float32) |
|
r, g, b = X[:, :, 0], X[:, :, 1], X[:, :, 2] |
|
kr, kg, kb = [random.random() + eps for _ in range(3)] |
|
ks = kr + kg + kb |
|
kr /= ks |
|
kg /= ks |
|
kb /= ks |
|
Y = r * kr + g * kg + b * kb |
|
Y = np.stack([Y] * 3, axis=2) |
|
return Y.clip(0, 255).astype(np.uint8) |
|
|
|
|
|
class DownSampleDetector: |
|
def __call__(self, img, level=3, k=16.0): |
|
h = img.astype(np.float32) |
|
for _ in range(level): |
|
h += np.random.normal(loc=0.0, scale=k, size=h.shape) |
|
h = cv2.pyrDown(h) |
|
for _ in range(level): |
|
h = cv2.pyrUp(h) |
|
h += np.random.normal(loc=0.0, scale=k, size=h.shape) |
|
return h.clip(0, 255).astype(np.uint8) |
|
|
|
|
|
class Image2MaskShuffleDetector: |
|
def __init__(self, resolution=(640, 512)): |
|
self.H, self.W = resolution |
|
|
|
def __call__(self, img): |
|
m = img2mask(img, self.H, self.W) |
|
m *= 255.0 |
|
return m.clip(0, 255).astype(np.uint8) |
|
|