|
import os |
|
import numpy as np |
|
from PIL import Image |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import matplotlib |
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
def convert_arg_line_to_args(arg_line): |
|
for arg in arg_line.split(): |
|
if not arg.strip(): |
|
continue |
|
yield str(arg) |
|
|
|
|
|
|
|
def save_args(args, filename): |
|
with open(filename, 'w') as f: |
|
for arg in vars(args): |
|
f.write('{}: {}\n'.format(arg, getattr(args, arg))) |
|
|
|
|
|
|
|
def concat_image(image_path_list, concat_image_path): |
|
imgs = [Image.open(i).convert("RGB").resize((640, 480), resample=Image.BILINEAR) for i in image_path_list] |
|
imgs_list = [] |
|
for i in range(len(imgs)): |
|
img = imgs[i] |
|
imgs_list.append(np.asarray(img)) |
|
|
|
H, W, _ = np.asarray(img).shape |
|
imgs_list.append(255 * np.ones((H, 20, 3)).astype('uint8')) |
|
|
|
imgs_comb = np.hstack(imgs_list[:-1]) |
|
imgs_comb = Image.fromarray(imgs_comb) |
|
imgs_comb.save(concat_image_path) |
|
|
|
|
|
|
|
def load_checkpoint(fpath, model): |
|
ckpt = torch.load(fpath, map_location='cpu')['model'] |
|
|
|
load_dict = {} |
|
for k, v in ckpt.items(): |
|
if k.startswith('module.'): |
|
k_ = k.replace('module.', '') |
|
load_dict[k_] = v |
|
else: |
|
load_dict[k] = v |
|
|
|
model.load_state_dict(load_dict) |
|
return model |
|
|
|
|
|
|
|
def compute_normal_errors(total_normal_errors): |
|
metrics = { |
|
'mean': np.average(total_normal_errors), |
|
'median': np.median(total_normal_errors), |
|
'rmse': np.sqrt(np.sum(total_normal_errors * total_normal_errors) / total_normal_errors.shape), |
|
'a1': 100.0 * (np.sum(total_normal_errors < 5) / total_normal_errors.shape[0]), |
|
'a2': 100.0 * (np.sum(total_normal_errors < 7.5) / total_normal_errors.shape[0]), |
|
'a3': 100.0 * (np.sum(total_normal_errors < 11.25) / total_normal_errors.shape[0]), |
|
'a4': 100.0 * (np.sum(total_normal_errors < 22.5) / total_normal_errors.shape[0]), |
|
'a5': 100.0 * (np.sum(total_normal_errors < 30) / total_normal_errors.shape[0]) |
|
} |
|
return metrics |
|
|
|
|
|
|
|
def log_normal_errors(metrics, where_to_write, first_line): |
|
print(first_line) |
|
print("mean median rmse 5 7.5 11.25 22.5 30") |
|
print("%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f" % ( |
|
metrics['mean'], metrics['median'], metrics['rmse'], |
|
metrics['a1'], metrics['a2'], metrics['a3'], metrics['a4'], metrics['a5'])) |
|
|
|
with open(where_to_write, 'a') as f: |
|
f.write('%s\n' % first_line) |
|
f.write("mean median rmse 5 7.5 11.25 22.5 30\n") |
|
f.write("%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f\n\n" % ( |
|
metrics['mean'], metrics['median'], metrics['rmse'], |
|
metrics['a1'], metrics['a2'], metrics['a3'], metrics['a4'], metrics['a5'])) |
|
|
|
|
|
|
|
def makedir(dirpath): |
|
if not os.path.exists(dirpath): |
|
os.makedirs(dirpath) |
|
|
|
|
|
|
|
def make_dir_from_list(dirpath_list): |
|
for dirpath in dirpath_list: |
|
makedir(dirpath) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__imagenet_stats = {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]} |
|
def unnormalize(img_in): |
|
img_out = np.zeros(img_in.shape) |
|
for ich in range(3): |
|
img_out[:, :, ich] = img_in[:, :, ich] * __imagenet_stats['std'][ich] |
|
img_out[:, :, ich] += __imagenet_stats['mean'][ich] |
|
img_out = (img_out * 255).astype(np.uint8) |
|
return img_out |
|
|
|
|
|
|
|
def kappa_to_alpha(pred_kappa): |
|
alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \ |
|
+ ((np.exp(- pred_kappa * np.pi) * np.pi) / (1 + np.exp(- pred_kappa * np.pi))) |
|
alpha = np.degrees(alpha) |
|
return alpha |
|
|
|
|
|
|
|
def norm_to_rgb(norm): |
|
|
|
norm_rgb = ((norm[0, ...] + 1) * 0.5) * 255 |
|
norm_rgb = np.clip(norm_rgb, a_min=0, a_max=255) |
|
norm_rgb = norm_rgb.astype(np.uint8) |
|
return norm_rgb |
|
|
|
|
|
|
|
def visualize(args, img, gt_norm, gt_norm_mask, norm_out_list, total_iter): |
|
B, _, H, W = gt_norm.shape |
|
|
|
pred_norm_list = [] |
|
pred_kappa_list = [] |
|
for norm_out in norm_out_list: |
|
norm_out = F.interpolate(norm_out, size=[gt_norm.size(2), gt_norm.size(3)], mode='nearest') |
|
pred_norm = norm_out[:, :3, :, :] |
|
pred_norm = pred_norm.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
pred_norm_list.append(pred_norm) |
|
|
|
pred_kappa = norm_out[:, 3:, :, :] |
|
pred_kappa = pred_kappa.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
pred_kappa_list.append(pred_kappa) |
|
|
|
|
|
img = img.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
gt_norm = gt_norm.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
gt_norm_mask = gt_norm_mask.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
|
|
|
|
target_path = '%s/%08d_img.jpg' % (args.exp_vis_dir, total_iter) |
|
img = unnormalize(img[0, ...]) |
|
plt.imsave(target_path, img) |
|
|
|
|
|
gt_norm_rgb = ((gt_norm[0, ...] + 1) * 0.5) * 255 |
|
gt_norm_rgb = np.clip(gt_norm_rgb, a_min=0, a_max=255) |
|
gt_norm_rgb = gt_norm_rgb.astype(np.uint8) |
|
|
|
target_path = '%s/%08d_gt_norm.jpg' % (args.exp_vis_dir, total_iter) |
|
plt.imsave(target_path, gt_norm_rgb * gt_norm_mask[0, ...]) |
|
|
|
|
|
for i in range(len(pred_norm_list)): |
|
pred_norm = pred_norm_list[i] |
|
pred_norm_rgb = norm_to_rgb(pred_norm) |
|
target_path = '%s/%08d_pred_norm_%d.jpg' % (args.exp_vis_dir, total_iter, i) |
|
plt.imsave(target_path, pred_norm_rgb) |
|
|
|
pred_kappa = pred_kappa_list[i] |
|
pred_alpha = kappa_to_alpha(pred_kappa) |
|
target_path = '%s/%08d_pred_alpha_%d.jpg' % (args.exp_vis_dir, total_iter, i) |
|
plt.imsave(target_path, pred_alpha[0, :, :, 0], vmin=0, vmax=60, cmap='jet') |
|
|
|
|
|
DP = np.sum(gt_norm * pred_norm, axis=3, keepdims=True) |
|
DP = np.clip(DP, -1, 1) |
|
E = np.degrees(np.arccos(DP)) |
|
E = E * gt_norm_mask |
|
target_path = '%s/%08d_pred_error_%d.jpg' % (args.exp_vis_dir, total_iter, i) |
|
plt.imsave(target_path, E[0, :, :, 0], vmin=0, vmax=60, cmap='jet') |
|
|