|
|
|
import warnings |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from annotator.uniformer.mmcv.arraymisc import dequantize, quantize |
|
from annotator.uniformer.mmcv.image import imread, imwrite |
|
from annotator.uniformer.mmcv.utils import is_str |
|
|
|
|
|
def flowread(flow_or_path, quantize=False, concat_axis=0, *args, **kwargs): |
|
"""Read an optical flow map. |
|
|
|
Args: |
|
flow_or_path (ndarray or str): A flow map or filepath. |
|
quantize (bool): whether to read quantized pair, if set to True, |
|
remaining args will be passed to :func:`dequantize_flow`. |
|
concat_axis (int): The axis that dx and dy are concatenated, |
|
can be either 0 or 1. Ignored if quantize is False. |
|
|
|
Returns: |
|
ndarray: Optical flow represented as a (h, w, 2) numpy array |
|
""" |
|
if isinstance(flow_or_path, np.ndarray): |
|
if (flow_or_path.ndim != 3) or (flow_or_path.shape[-1] != 2): |
|
raise ValueError(f'Invalid flow with shape {flow_or_path.shape}') |
|
return flow_or_path |
|
elif not is_str(flow_or_path): |
|
raise TypeError(f'"flow_or_path" must be a filename or numpy array, ' |
|
f'not {type(flow_or_path)}') |
|
|
|
if not quantize: |
|
with open(flow_or_path, 'rb') as f: |
|
try: |
|
header = f.read(4).decode('utf-8') |
|
except Exception: |
|
raise IOError(f'Invalid flow file: {flow_or_path}') |
|
else: |
|
if header != 'PIEH': |
|
raise IOError(f'Invalid flow file: {flow_or_path}, ' |
|
'header does not contain PIEH') |
|
|
|
w = np.fromfile(f, np.int32, 1).squeeze() |
|
h = np.fromfile(f, np.int32, 1).squeeze() |
|
flow = np.fromfile(f, np.float32, w * h * 2).reshape((h, w, 2)) |
|
else: |
|
assert concat_axis in [0, 1] |
|
cat_flow = imread(flow_or_path, flag='unchanged') |
|
if cat_flow.ndim != 2: |
|
raise IOError( |
|
f'{flow_or_path} is not a valid quantized flow file, ' |
|
f'its dimension is {cat_flow.ndim}.') |
|
assert cat_flow.shape[concat_axis] % 2 == 0 |
|
dx, dy = np.split(cat_flow, 2, axis=concat_axis) |
|
flow = dequantize_flow(dx, dy, *args, **kwargs) |
|
|
|
return flow.astype(np.float32) |
|
|
|
|
|
def flowwrite(flow, filename, quantize=False, concat_axis=0, *args, **kwargs): |
|
"""Write optical flow to file. |
|
|
|
If the flow is not quantized, it will be saved as a .flo file losslessly, |
|
otherwise a jpeg image which is lossy but of much smaller size. (dx and dy |
|
will be concatenated horizontally into a single image if quantize is True.) |
|
|
|
Args: |
|
flow (ndarray): (h, w, 2) array of optical flow. |
|
filename (str): Output filepath. |
|
quantize (bool): Whether to quantize the flow and save it to 2 jpeg |
|
images. If set to True, remaining args will be passed to |
|
:func:`quantize_flow`. |
|
concat_axis (int): The axis that dx and dy are concatenated, |
|
can be either 0 or 1. Ignored if quantize is False. |
|
""" |
|
if not quantize: |
|
with open(filename, 'wb') as f: |
|
f.write('PIEH'.encode('utf-8')) |
|
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f) |
|
flow = flow.astype(np.float32) |
|
flow.tofile(f) |
|
f.flush() |
|
else: |
|
assert concat_axis in [0, 1] |
|
dx, dy = quantize_flow(flow, *args, **kwargs) |
|
dxdy = np.concatenate((dx, dy), axis=concat_axis) |
|
imwrite(dxdy, filename) |
|
|
|
|
|
def quantize_flow(flow, max_val=0.02, norm=True): |
|
"""Quantize flow to [0, 255]. |
|
|
|
After this step, the size of flow will be much smaller, and can be |
|
dumped as jpeg images. |
|
|
|
Args: |
|
flow (ndarray): (h, w, 2) array of optical flow. |
|
max_val (float): Maximum value of flow, values beyond |
|
[-max_val, max_val] will be truncated. |
|
norm (bool): Whether to divide flow values by image width/height. |
|
|
|
Returns: |
|
tuple[ndarray]: Quantized dx and dy. |
|
""" |
|
h, w, _ = flow.shape |
|
dx = flow[..., 0] |
|
dy = flow[..., 1] |
|
if norm: |
|
dx = dx / w |
|
dy = dy / h |
|
|
|
flow_comps = [ |
|
quantize(d, -max_val, max_val, 255, np.uint8) for d in [dx, dy] |
|
] |
|
return tuple(flow_comps) |
|
|
|
|
|
def dequantize_flow(dx, dy, max_val=0.02, denorm=True): |
|
"""Recover from quantized flow. |
|
|
|
Args: |
|
dx (ndarray): Quantized dx. |
|
dy (ndarray): Quantized dy. |
|
max_val (float): Maximum value used when quantizing. |
|
denorm (bool): Whether to multiply flow values with width/height. |
|
|
|
Returns: |
|
ndarray: Dequantized flow. |
|
""" |
|
assert dx.shape == dy.shape |
|
assert dx.ndim == 2 or (dx.ndim == 3 and dx.shape[-1] == 1) |
|
|
|
dx, dy = [dequantize(d, -max_val, max_val, 255) for d in [dx, dy]] |
|
|
|
if denorm: |
|
dx *= dx.shape[1] |
|
dy *= dx.shape[0] |
|
flow = np.dstack((dx, dy)) |
|
return flow |
|
|
|
|
|
def flow_warp(img, flow, filling_value=0, interpolate_mode='nearest'): |
|
"""Use flow to warp img. |
|
|
|
Args: |
|
img (ndarray, float or uint8): Image to be warped. |
|
flow (ndarray, float): Optical Flow. |
|
filling_value (int): The missing pixels will be set with filling_value. |
|
interpolate_mode (str): bilinear -> Bilinear Interpolation; |
|
nearest -> Nearest Neighbor. |
|
|
|
Returns: |
|
ndarray: Warped image with the same shape of img |
|
""" |
|
warnings.warn('This function is just for prototyping and cannot ' |
|
'guarantee the computational efficiency.') |
|
assert flow.ndim == 3, 'Flow must be in 3D arrays.' |
|
height = flow.shape[0] |
|
width = flow.shape[1] |
|
channels = img.shape[2] |
|
|
|
output = np.ones( |
|
(height, width, channels), dtype=img.dtype) * filling_value |
|
|
|
grid = np.indices((height, width)).swapaxes(0, 1).swapaxes(1, 2) |
|
dx = grid[:, :, 0] + flow[:, :, 1] |
|
dy = grid[:, :, 1] + flow[:, :, 0] |
|
sx = np.floor(dx).astype(int) |
|
sy = np.floor(dy).astype(int) |
|
valid = (sx >= 0) & (sx < height - 1) & (sy >= 0) & (sy < width - 1) |
|
|
|
if interpolate_mode == 'nearest': |
|
output[valid, :] = img[dx[valid].round().astype(int), |
|
dy[valid].round().astype(int), :] |
|
elif interpolate_mode == 'bilinear': |
|
|
|
eps_ = 1e-6 |
|
dx, dy = dx + eps_, dy + eps_ |
|
left_top_ = img[np.floor(dx[valid]).astype(int), |
|
np.floor(dy[valid]).astype(int), :] * ( |
|
np.ceil(dx[valid]) - dx[valid])[:, None] * ( |
|
np.ceil(dy[valid]) - dy[valid])[:, None] |
|
left_down_ = img[np.ceil(dx[valid]).astype(int), |
|
np.floor(dy[valid]).astype(int), :] * ( |
|
dx[valid] - np.floor(dx[valid]))[:, None] * ( |
|
np.ceil(dy[valid]) - dy[valid])[:, None] |
|
right_top_ = img[np.floor(dx[valid]).astype(int), |
|
np.ceil(dy[valid]).astype(int), :] * ( |
|
np.ceil(dx[valid]) - dx[valid])[:, None] * ( |
|
dy[valid] - np.floor(dy[valid]))[:, None] |
|
right_down_ = img[np.ceil(dx[valid]).astype(int), |
|
np.ceil(dy[valid]).astype(int), :] * ( |
|
dx[valid] - np.floor(dx[valid]))[:, None] * ( |
|
dy[valid] - np.floor(dy[valid]))[:, None] |
|
output[valid, :] = left_top_ + left_down_ + right_top_ + right_down_ |
|
else: |
|
raise NotImplementedError( |
|
'We only support interpolation modes of nearest and bilinear, ' |
|
f'but got {interpolate_mode}.') |
|
return output.astype(img.dtype) |
|
|
|
|
|
def flow_from_bytes(content): |
|
"""Read dense optical flow from bytes. |
|
|
|
.. note:: |
|
This load optical flow function works for FlyingChairs, FlyingThings3D, |
|
Sintel, FlyingChairsOcc datasets, but cannot load the data from |
|
ChairsSDHom. |
|
|
|
Args: |
|
content (bytes): Optical flow bytes got from files or other streams. |
|
|
|
Returns: |
|
ndarray: Loaded optical flow with the shape (H, W, 2). |
|
""" |
|
|
|
|
|
header = content[:4] |
|
if header.decode('utf-8') != 'PIEH': |
|
raise Exception('Flow file header does not contain PIEH') |
|
|
|
width = np.frombuffer(content[4:], np.int32, 1).squeeze() |
|
|
|
height = np.frombuffer(content[8:], np.int32, 1).squeeze() |
|
|
|
flow = np.frombuffer(content[12:], np.float32, width * height * 2).reshape( |
|
(height, width, 2)) |
|
|
|
return flow |
|
|
|
|
|
def sparse_flow_from_bytes(content): |
|
"""Read the optical flow in KITTI datasets from bytes. |
|
|
|
This function is modified from RAFT load the `KITTI datasets |
|
<https://github.com/princeton-vl/RAFT/blob/224320502d66c356d88e6c712f38129e60661e80/core/utils/frame_utils.py#L102>`_. |
|
|
|
Args: |
|
content (bytes): Optical flow bytes got from files or other streams. |
|
|
|
Returns: |
|
Tuple(ndarray, ndarray): Loaded optical flow with the shape (H, W, 2) |
|
and flow valid mask with the shape (H, W). |
|
""" |
|
|
|
content = np.frombuffer(content, np.uint8) |
|
flow = cv2.imdecode(content, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR) |
|
flow = flow[:, :, ::-1].astype(np.float32) |
|
|
|
flow, valid = flow[:, :, :2], flow[:, :, 2] |
|
flow = (flow - 2**15) / 64.0 |
|
return flow, valid |
|
|