|
|
|
import torch.nn as nn |
|
|
|
from .registry import PADDING_LAYERS |
|
|
|
PADDING_LAYERS.register_module('zero', module=nn.ZeroPad2d) |
|
PADDING_LAYERS.register_module('reflect', module=nn.ReflectionPad2d) |
|
PADDING_LAYERS.register_module('replicate', module=nn.ReplicationPad2d) |
|
|
|
|
|
def build_padding_layer(cfg, *args, **kwargs): |
|
"""Build padding layer. |
|
|
|
Args: |
|
cfg (None or dict): The padding layer config, which should contain: |
|
- type (str): Layer type. |
|
- layer args: Args needed to instantiate a padding layer. |
|
|
|
Returns: |
|
nn.Module: Created padding layer. |
|
""" |
|
if not isinstance(cfg, dict): |
|
raise TypeError('cfg must be a dict') |
|
if 'type' not in cfg: |
|
raise KeyError('the cfg dict must contain the key "type"') |
|
|
|
cfg_ = cfg.copy() |
|
padding_type = cfg_.pop('type') |
|
if padding_type not in PADDING_LAYERS: |
|
raise KeyError(f'Unrecognized padding type {padding_type}.') |
|
else: |
|
padding_layer = PADDING_LAYERS.get(padding_type) |
|
|
|
layer = padding_layer(*args, **kwargs, **cfg_) |
|
|
|
return layer |
|
|