|
|
|
import numpy as np |
|
|
|
|
|
def quantize(arr, min_val, max_val, levels, dtype=np.int64): |
|
"""Quantize an array of (-inf, inf) to [0, levels-1]. |
|
|
|
Args: |
|
arr (ndarray): Input array. |
|
min_val (scalar): Minimum value to be clipped. |
|
max_val (scalar): Maximum value to be clipped. |
|
levels (int): Quantization levels. |
|
dtype (np.type): The type of the quantized array. |
|
|
|
Returns: |
|
tuple: Quantized array. |
|
""" |
|
if not (isinstance(levels, int) and levels > 1): |
|
raise ValueError( |
|
f'levels must be a positive integer, but got {levels}') |
|
if min_val >= max_val: |
|
raise ValueError( |
|
f'min_val ({min_val}) must be smaller than max_val ({max_val})') |
|
|
|
arr = np.clip(arr, min_val, max_val) - min_val |
|
quantized_arr = np.minimum( |
|
np.floor(levels * arr / (max_val - min_val)).astype(dtype), levels - 1) |
|
|
|
return quantized_arr |
|
|
|
|
|
def dequantize(arr, min_val, max_val, levels, dtype=np.float64): |
|
"""Dequantize an array. |
|
|
|
Args: |
|
arr (ndarray): Input array. |
|
min_val (scalar): Minimum value to be clipped. |
|
max_val (scalar): Maximum value to be clipped. |
|
levels (int): Quantization levels. |
|
dtype (np.type): The type of the dequantized array. |
|
|
|
Returns: |
|
tuple: Dequantized array. |
|
""" |
|
if not (isinstance(levels, int) and levels > 1): |
|
raise ValueError( |
|
f'levels must be a positive integer, but got {levels}') |
|
if min_val >= max_val: |
|
raise ValueError( |
|
f'min_val ({min_val}) must be smaller than max_val ({max_val})') |
|
|
|
dequantized_arr = (arr + 0.5).astype(dtype) * (max_val - |
|
min_val) / levels + min_val |
|
|
|
return dequantized_arr |
|
|