|
|
|
import fvcore.nn.weight_init as weight_init |
|
import torch.nn.functional as F |
|
|
|
from annotator.oneformer.detectron2.layers import CNNBlockBase, Conv2d, get_norm |
|
from annotator.oneformer.detectron2.modeling import BACKBONE_REGISTRY |
|
from annotator.oneformer.detectron2.modeling.backbone.resnet import ( |
|
BasicStem, |
|
BottleneckBlock, |
|
DeformBottleneckBlock, |
|
ResNet, |
|
) |
|
|
|
|
|
class DeepLabStem(CNNBlockBase): |
|
""" |
|
The DeepLab ResNet stem (layers before the first residual block). |
|
""" |
|
|
|
def __init__(self, in_channels=3, out_channels=128, norm="BN"): |
|
""" |
|
Args: |
|
norm (str or callable): norm after the first conv layer. |
|
See :func:`layers.get_norm` for supported format. |
|
""" |
|
super().__init__(in_channels, out_channels, 4) |
|
self.in_channels = in_channels |
|
self.conv1 = Conv2d( |
|
in_channels, |
|
out_channels // 2, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False, |
|
norm=get_norm(norm, out_channels // 2), |
|
) |
|
self.conv2 = Conv2d( |
|
out_channels // 2, |
|
out_channels // 2, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
norm=get_norm(norm, out_channels // 2), |
|
) |
|
self.conv3 = Conv2d( |
|
out_channels // 2, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
norm=get_norm(norm, out_channels), |
|
) |
|
weight_init.c2_msra_fill(self.conv1) |
|
weight_init.c2_msra_fill(self.conv2) |
|
weight_init.c2_msra_fill(self.conv3) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = F.relu_(x) |
|
x = self.conv2(x) |
|
x = F.relu_(x) |
|
x = self.conv3(x) |
|
x = F.relu_(x) |
|
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) |
|
return x |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def build_resnet_deeplab_backbone(cfg, input_shape): |
|
""" |
|
Create a ResNet instance from config. |
|
Returns: |
|
ResNet: a :class:`ResNet` instance. |
|
""" |
|
|
|
norm = cfg.MODEL.RESNETS.NORM |
|
if cfg.MODEL.RESNETS.STEM_TYPE == "basic": |
|
stem = BasicStem( |
|
in_channels=input_shape.channels, |
|
out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS, |
|
norm=norm, |
|
) |
|
elif cfg.MODEL.RESNETS.STEM_TYPE == "deeplab": |
|
stem = DeepLabStem( |
|
in_channels=input_shape.channels, |
|
out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS, |
|
norm=norm, |
|
) |
|
else: |
|
raise ValueError("Unknown stem type: {}".format(cfg.MODEL.RESNETS.STEM_TYPE)) |
|
|
|
|
|
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT |
|
out_features = cfg.MODEL.RESNETS.OUT_FEATURES |
|
depth = cfg.MODEL.RESNETS.DEPTH |
|
num_groups = cfg.MODEL.RESNETS.NUM_GROUPS |
|
width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP |
|
bottleneck_channels = num_groups * width_per_group |
|
in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS |
|
out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS |
|
stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1 |
|
res4_dilation = cfg.MODEL.RESNETS.RES4_DILATION |
|
res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION |
|
deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE |
|
deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED |
|
deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS |
|
res5_multi_grid = cfg.MODEL.RESNETS.RES5_MULTI_GRID |
|
|
|
assert res4_dilation in {1, 2}, "res4_dilation cannot be {}.".format(res4_dilation) |
|
assert res5_dilation in {1, 2, 4}, "res5_dilation cannot be {}.".format(res5_dilation) |
|
if res4_dilation == 2: |
|
|
|
assert res5_dilation == 4 |
|
|
|
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth] |
|
|
|
stages = [] |
|
|
|
|
|
|
|
out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features] |
|
max_stage_idx = max(out_stage_idx) |
|
for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)): |
|
if stage_idx == 4: |
|
dilation = res4_dilation |
|
elif stage_idx == 5: |
|
dilation = res5_dilation |
|
else: |
|
dilation = 1 |
|
first_stride = 1 if idx == 0 or dilation > 1 else 2 |
|
stage_kargs = { |
|
"num_blocks": num_blocks_per_stage[idx], |
|
"stride_per_block": [first_stride] + [1] * (num_blocks_per_stage[idx] - 1), |
|
"in_channels": in_channels, |
|
"out_channels": out_channels, |
|
"norm": norm, |
|
} |
|
stage_kargs["bottleneck_channels"] = bottleneck_channels |
|
stage_kargs["stride_in_1x1"] = stride_in_1x1 |
|
stage_kargs["dilation"] = dilation |
|
stage_kargs["num_groups"] = num_groups |
|
if deform_on_per_stage[idx]: |
|
stage_kargs["block_class"] = DeformBottleneckBlock |
|
stage_kargs["deform_modulated"] = deform_modulated |
|
stage_kargs["deform_num_groups"] = deform_num_groups |
|
else: |
|
stage_kargs["block_class"] = BottleneckBlock |
|
if stage_idx == 5: |
|
stage_kargs.pop("dilation") |
|
stage_kargs["dilation_per_block"] = [dilation * mg for mg in res5_multi_grid] |
|
blocks = ResNet.make_stage(**stage_kargs) |
|
in_channels = out_channels |
|
out_channels *= 2 |
|
bottleneck_channels *= 2 |
|
stages.append(blocks) |
|
return ResNet(stem, stages, out_features=out_features).freeze(freeze_at) |
|
|