|
|
|
import copy |
|
import logging |
|
import os |
|
import torch |
|
from caffe2.proto import caffe2_pb2 |
|
from torch import nn |
|
|
|
from annotator.oneformer.detectron2.config import CfgNode |
|
from annotator.oneformer.detectron2.utils.file_io import PathManager |
|
|
|
from .caffe2_inference import ProtobufDetectionModel |
|
from .caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP, convert_batched_inputs_to_c2_format |
|
from .shared import get_pb_arg_vali, get_pb_arg_vals, save_graph |
|
|
|
__all__ = [ |
|
"Caffe2Model", |
|
"Caffe2Tracer", |
|
] |
|
|
|
|
|
class Caffe2Tracer: |
|
""" |
|
Make a detectron2 model traceable with Caffe2 operators. |
|
This class creates a traceable version of a detectron2 model which: |
|
|
|
1. Rewrite parts of the model using ops in Caffe2. Note that some ops do |
|
not have GPU implementation in Caffe2. |
|
2. Remove post-processing and only produce raw layer outputs |
|
|
|
After making a traceable model, the class provide methods to export such a |
|
model to different deployment formats. |
|
Exported graph produced by this class take two input tensors: |
|
|
|
1. (1, C, H, W) float "data" which is an image (usually in [0, 255]). |
|
(H, W) often has to be padded to multiple of 32 (depend on the model |
|
architecture). |
|
2. 1x3 float "im_info", each row of which is (height, width, 1.0). |
|
Height and width are true image shapes before padding. |
|
|
|
The class currently only supports models using builtin meta architectures. |
|
Batch inference is not supported, and contributions are welcome. |
|
""" |
|
|
|
def __init__(self, cfg: CfgNode, model: nn.Module, inputs): |
|
""" |
|
Args: |
|
cfg (CfgNode): a detectron2 config used to construct caffe2-compatible model. |
|
model (nn.Module): An original pytorch model. Must be among a few official models |
|
in detectron2 that can be converted to become caffe2-compatible automatically. |
|
Weights have to be already loaded to this model. |
|
inputs: sample inputs that the given model takes for inference. |
|
Will be used to trace the model. For most models, random inputs with |
|
no detected objects will not work as they lead to wrong traces. |
|
""" |
|
assert isinstance(cfg, CfgNode), cfg |
|
assert isinstance(model, torch.nn.Module), type(model) |
|
|
|
|
|
C2MetaArch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[cfg.MODEL.META_ARCHITECTURE] |
|
self.traceable_model = C2MetaArch(cfg, copy.deepcopy(model)) |
|
self.inputs = inputs |
|
self.traceable_inputs = self.traceable_model.get_caffe2_inputs(inputs) |
|
|
|
def export_caffe2(self): |
|
""" |
|
Export the model to Caffe2's protobuf format. |
|
The returned object can be saved with its :meth:`.save_protobuf()` method. |
|
The result can be loaded and executed using Caffe2 runtime. |
|
|
|
Returns: |
|
:class:`Caffe2Model` |
|
""" |
|
from .caffe2_export import export_caffe2_detection_model |
|
|
|
predict_net, init_net = export_caffe2_detection_model( |
|
self.traceable_model, self.traceable_inputs |
|
) |
|
return Caffe2Model(predict_net, init_net) |
|
|
|
def export_onnx(self): |
|
""" |
|
Export the model to ONNX format. |
|
Note that the exported model contains custom ops only available in caffe2, therefore it |
|
cannot be directly executed by other runtime (such as onnxruntime or TensorRT). |
|
Post-processing or transformation passes may be applied on the model to accommodate |
|
different runtimes, but we currently do not provide support for them. |
|
|
|
Returns: |
|
onnx.ModelProto: an onnx model. |
|
""" |
|
from .caffe2_export import export_onnx_model as export_onnx_model_impl |
|
|
|
return export_onnx_model_impl(self.traceable_model, (self.traceable_inputs,)) |
|
|
|
def export_torchscript(self): |
|
""" |
|
Export the model to a ``torch.jit.TracedModule`` by tracing. |
|
The returned object can be saved to a file by ``.save()``. |
|
|
|
Returns: |
|
torch.jit.TracedModule: a torch TracedModule |
|
""" |
|
logger = logging.getLogger(__name__) |
|
logger.info("Tracing the model with torch.jit.trace ...") |
|
with torch.no_grad(): |
|
return torch.jit.trace(self.traceable_model, (self.traceable_inputs,)) |
|
|
|
|
|
class Caffe2Model(nn.Module): |
|
""" |
|
A wrapper around the traced model in Caffe2's protobuf format. |
|
The exported graph has different inputs/outputs from the original Pytorch |
|
model, as explained in :class:`Caffe2Tracer`. This class wraps around the |
|
exported graph to simulate the same interface as the original Pytorch model. |
|
It also provides functions to save/load models in Caffe2's format.' |
|
|
|
Examples: |
|
:: |
|
c2_model = Caffe2Tracer(cfg, torch_model, inputs).export_caffe2() |
|
inputs = [{"image": img_tensor_CHW}] |
|
outputs = c2_model(inputs) |
|
orig_outputs = torch_model(inputs) |
|
""" |
|
|
|
def __init__(self, predict_net, init_net): |
|
super().__init__() |
|
self.eval() |
|
self._predict_net = predict_net |
|
self._init_net = init_net |
|
self._predictor = None |
|
|
|
__init__.__HIDE_SPHINX_DOC__ = True |
|
|
|
@property |
|
def predict_net(self): |
|
""" |
|
caffe2.core.Net: the underlying caffe2 predict net |
|
""" |
|
return self._predict_net |
|
|
|
@property |
|
def init_net(self): |
|
""" |
|
caffe2.core.Net: the underlying caffe2 init net |
|
""" |
|
return self._init_net |
|
|
|
def save_protobuf(self, output_dir): |
|
""" |
|
Save the model as caffe2's protobuf format. |
|
It saves the following files: |
|
|
|
* "model.pb": definition of the graph. Can be visualized with |
|
tools like `netron <https://github.com/lutzroeder/netron>`_. |
|
* "model_init.pb": model parameters |
|
* "model.pbtxt": human-readable definition of the graph. Not |
|
needed for deployment. |
|
|
|
Args: |
|
output_dir (str): the output directory to save protobuf files. |
|
""" |
|
logger = logging.getLogger(__name__) |
|
logger.info("Saving model to {} ...".format(output_dir)) |
|
if not PathManager.exists(output_dir): |
|
PathManager.mkdirs(output_dir) |
|
|
|
with PathManager.open(os.path.join(output_dir, "model.pb"), "wb") as f: |
|
f.write(self._predict_net.SerializeToString()) |
|
with PathManager.open(os.path.join(output_dir, "model.pbtxt"), "w") as f: |
|
f.write(str(self._predict_net)) |
|
with PathManager.open(os.path.join(output_dir, "model_init.pb"), "wb") as f: |
|
f.write(self._init_net.SerializeToString()) |
|
|
|
def save_graph(self, output_file, inputs=None): |
|
""" |
|
Save the graph as SVG format. |
|
|
|
Args: |
|
output_file (str): a SVG file |
|
inputs: optional inputs given to the model. |
|
If given, the inputs will be used to run the graph to record |
|
shape of every tensor. The shape information will be |
|
saved together with the graph. |
|
""" |
|
from .caffe2_export import run_and_save_graph |
|
|
|
if inputs is None: |
|
save_graph(self._predict_net, output_file, op_only=False) |
|
else: |
|
size_divisibility = get_pb_arg_vali(self._predict_net, "size_divisibility", 0) |
|
device = get_pb_arg_vals(self._predict_net, "device", b"cpu").decode("ascii") |
|
inputs = convert_batched_inputs_to_c2_format(inputs, size_divisibility, device) |
|
inputs = [x.cpu().numpy() for x in inputs] |
|
run_and_save_graph(self._predict_net, self._init_net, inputs, output_file) |
|
|
|
@staticmethod |
|
def load_protobuf(dir): |
|
""" |
|
Args: |
|
dir (str): a directory used to save Caffe2Model with |
|
:meth:`save_protobuf`. |
|
The files "model.pb" and "model_init.pb" are needed. |
|
|
|
Returns: |
|
Caffe2Model: the caffe2 model loaded from this directory. |
|
""" |
|
predict_net = caffe2_pb2.NetDef() |
|
with PathManager.open(os.path.join(dir, "model.pb"), "rb") as f: |
|
predict_net.ParseFromString(f.read()) |
|
|
|
init_net = caffe2_pb2.NetDef() |
|
with PathManager.open(os.path.join(dir, "model_init.pb"), "rb") as f: |
|
init_net.ParseFromString(f.read()) |
|
|
|
return Caffe2Model(predict_net, init_net) |
|
|
|
def __call__(self, inputs): |
|
""" |
|
An interface that wraps around a Caffe2 model and mimics detectron2's models' |
|
input/output format. See details about the format at :doc:`/tutorials/models`. |
|
This is used to compare the outputs of caffe2 model with its original torch model. |
|
|
|
Due to the extra conversion between Pytorch/Caffe2, this method is not meant for |
|
benchmark. Because of the conversion, this method also has dependency |
|
on detectron2 in order to convert to detectron2's output format. |
|
""" |
|
if self._predictor is None: |
|
self._predictor = ProtobufDetectionModel(self._predict_net, self._init_net) |
|
return self._predictor(inputs) |
|
|