|
|
|
|
|
|
|
""" |
|
Common data processing utilities that are used in a |
|
typical object detection data pipeline. |
|
""" |
|
import logging |
|
import numpy as np |
|
from typing import List, Union |
|
import pycocotools.mask as mask_util |
|
import torch |
|
from PIL import Image |
|
|
|
from annotator.oneformer.detectron2.structures import ( |
|
BitMasks, |
|
Boxes, |
|
BoxMode, |
|
Instances, |
|
Keypoints, |
|
PolygonMasks, |
|
RotatedBoxes, |
|
polygons_to_bitmask, |
|
) |
|
from annotator.oneformer.detectron2.utils.file_io import PathManager |
|
|
|
from . import transforms as T |
|
from .catalog import MetadataCatalog |
|
|
|
__all__ = [ |
|
"SizeMismatchError", |
|
"convert_image_to_rgb", |
|
"check_image_size", |
|
"transform_proposals", |
|
"transform_instance_annotations", |
|
"annotations_to_instances", |
|
"annotations_to_instances_rotated", |
|
"build_augmentation", |
|
"build_transform_gen", |
|
"create_keypoint_hflip_indices", |
|
"filter_empty_instances", |
|
"read_image", |
|
] |
|
|
|
|
|
class SizeMismatchError(ValueError): |
|
""" |
|
When loaded image has difference width/height compared with annotation. |
|
""" |
|
|
|
|
|
|
|
_M_RGB2YUV = [[0.299, 0.587, 0.114], [-0.14713, -0.28886, 0.436], [0.615, -0.51499, -0.10001]] |
|
_M_YUV2RGB = [[1.0, 0.0, 1.13983], [1.0, -0.39465, -0.58060], [1.0, 2.03211, 0.0]] |
|
|
|
|
|
_EXIF_ORIENT = 274 |
|
|
|
|
|
def convert_PIL_to_numpy(image, format): |
|
""" |
|
Convert PIL image to numpy array of target format. |
|
|
|
Args: |
|
image (PIL.Image): a PIL image |
|
format (str): the format of output image |
|
|
|
Returns: |
|
(np.ndarray): also see `read_image` |
|
""" |
|
if format is not None: |
|
|
|
conversion_format = format |
|
if format in ["BGR", "YUV-BT.601"]: |
|
conversion_format = "RGB" |
|
image = image.convert(conversion_format) |
|
image = np.asarray(image) |
|
|
|
if format == "L": |
|
image = np.expand_dims(image, -1) |
|
|
|
|
|
elif format == "BGR": |
|
|
|
image = image[:, :, ::-1] |
|
elif format == "YUV-BT.601": |
|
image = image / 255.0 |
|
image = np.dot(image, np.array(_M_RGB2YUV).T) |
|
|
|
return image |
|
|
|
|
|
def convert_image_to_rgb(image, format): |
|
""" |
|
Convert an image from given format to RGB. |
|
|
|
Args: |
|
image (np.ndarray or Tensor): an HWC image |
|
format (str): the format of input image, also see `read_image` |
|
|
|
Returns: |
|
(np.ndarray): (H,W,3) RGB image in 0-255 range, can be either float or uint8 |
|
""" |
|
if isinstance(image, torch.Tensor): |
|
image = image.cpu().numpy() |
|
if format == "BGR": |
|
image = image[:, :, [2, 1, 0]] |
|
elif format == "YUV-BT.601": |
|
image = np.dot(image, np.array(_M_YUV2RGB).T) |
|
image = image * 255.0 |
|
else: |
|
if format == "L": |
|
image = image[:, :, 0] |
|
image = image.astype(np.uint8) |
|
image = np.asarray(Image.fromarray(image, mode=format).convert("RGB")) |
|
return image |
|
|
|
|
|
def _apply_exif_orientation(image): |
|
""" |
|
Applies the exif orientation correctly. |
|
|
|
This code exists per the bug: |
|
https://github.com/python-pillow/Pillow/issues/3973 |
|
with the function `ImageOps.exif_transpose`. The Pillow source raises errors with |
|
various methods, especially `tobytes` |
|
|
|
Function based on: |
|
https://github.com/wkentaro/labelme/blob/v4.5.4/labelme/utils/image.py#L59 |
|
https://github.com/python-pillow/Pillow/blob/7.1.2/src/PIL/ImageOps.py#L527 |
|
|
|
Args: |
|
image (PIL.Image): a PIL image |
|
|
|
Returns: |
|
(PIL.Image): the PIL image with exif orientation applied, if applicable |
|
""" |
|
if not hasattr(image, "getexif"): |
|
return image |
|
|
|
try: |
|
exif = image.getexif() |
|
except Exception: |
|
exif = None |
|
|
|
if exif is None: |
|
return image |
|
|
|
orientation = exif.get(_EXIF_ORIENT) |
|
|
|
method = { |
|
2: Image.FLIP_LEFT_RIGHT, |
|
3: Image.ROTATE_180, |
|
4: Image.FLIP_TOP_BOTTOM, |
|
5: Image.TRANSPOSE, |
|
6: Image.ROTATE_270, |
|
7: Image.TRANSVERSE, |
|
8: Image.ROTATE_90, |
|
}.get(orientation) |
|
|
|
if method is not None: |
|
return image.transpose(method) |
|
return image |
|
|
|
|
|
def read_image(file_name, format=None): |
|
""" |
|
Read an image into the given format. |
|
Will apply rotation and flipping if the image has such exif information. |
|
|
|
Args: |
|
file_name (str): image file path |
|
format (str): one of the supported image modes in PIL, or "BGR" or "YUV-BT.601". |
|
|
|
Returns: |
|
image (np.ndarray): |
|
an HWC image in the given format, which is 0-255, uint8 for |
|
supported image modes in PIL or "BGR"; float (0-1 for Y) for YUV-BT.601. |
|
""" |
|
with PathManager.open(file_name, "rb") as f: |
|
image = Image.open(f) |
|
|
|
|
|
image = _apply_exif_orientation(image) |
|
return convert_PIL_to_numpy(image, format) |
|
|
|
|
|
def check_image_size(dataset_dict, image): |
|
""" |
|
Raise an error if the image does not match the size specified in the dict. |
|
""" |
|
if "width" in dataset_dict or "height" in dataset_dict: |
|
image_wh = (image.shape[1], image.shape[0]) |
|
expected_wh = (dataset_dict["width"], dataset_dict["height"]) |
|
if not image_wh == expected_wh: |
|
raise SizeMismatchError( |
|
"Mismatched image shape{}, got {}, expect {}.".format( |
|
" for image " + dataset_dict["file_name"] |
|
if "file_name" in dataset_dict |
|
else "", |
|
image_wh, |
|
expected_wh, |
|
) |
|
+ " Please check the width/height in your annotation." |
|
) |
|
|
|
|
|
if "width" not in dataset_dict: |
|
dataset_dict["width"] = image.shape[1] |
|
if "height" not in dataset_dict: |
|
dataset_dict["height"] = image.shape[0] |
|
|
|
|
|
def transform_proposals(dataset_dict, image_shape, transforms, *, proposal_topk, min_box_size=0): |
|
""" |
|
Apply transformations to the proposals in dataset_dict, if any. |
|
|
|
Args: |
|
dataset_dict (dict): a dict read from the dataset, possibly |
|
contains fields "proposal_boxes", "proposal_objectness_logits", "proposal_bbox_mode" |
|
image_shape (tuple): height, width |
|
transforms (TransformList): |
|
proposal_topk (int): only keep top-K scoring proposals |
|
min_box_size (int): proposals with either side smaller than this |
|
threshold are removed |
|
|
|
The input dict is modified in-place, with abovementioned keys removed. A new |
|
key "proposals" will be added. Its value is an `Instances` |
|
object which contains the transformed proposals in its field |
|
"proposal_boxes" and "objectness_logits". |
|
""" |
|
if "proposal_boxes" in dataset_dict: |
|
|
|
boxes = transforms.apply_box( |
|
BoxMode.convert( |
|
dataset_dict.pop("proposal_boxes"), |
|
dataset_dict.pop("proposal_bbox_mode"), |
|
BoxMode.XYXY_ABS, |
|
) |
|
) |
|
boxes = Boxes(boxes) |
|
objectness_logits = torch.as_tensor( |
|
dataset_dict.pop("proposal_objectness_logits").astype("float32") |
|
) |
|
|
|
boxes.clip(image_shape) |
|
keep = boxes.nonempty(threshold=min_box_size) |
|
boxes = boxes[keep] |
|
objectness_logits = objectness_logits[keep] |
|
|
|
proposals = Instances(image_shape) |
|
proposals.proposal_boxes = boxes[:proposal_topk] |
|
proposals.objectness_logits = objectness_logits[:proposal_topk] |
|
dataset_dict["proposals"] = proposals |
|
|
|
|
|
def get_bbox(annotation): |
|
""" |
|
Get bbox from data |
|
Args: |
|
annotation (dict): dict of instance annotations for a single instance. |
|
Returns: |
|
bbox (ndarray): x1, y1, x2, y2 coordinates |
|
""" |
|
|
|
bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"], BoxMode.XYXY_ABS) |
|
return bbox |
|
|
|
|
|
def transform_instance_annotations( |
|
annotation, transforms, image_size, *, keypoint_hflip_indices=None |
|
): |
|
""" |
|
Apply transforms to box, segmentation and keypoints annotations of a single instance. |
|
|
|
It will use `transforms.apply_box` for the box, and |
|
`transforms.apply_coords` for segmentation polygons & keypoints. |
|
If you need anything more specially designed for each data structure, |
|
you'll need to implement your own version of this function or the transforms. |
|
|
|
Args: |
|
annotation (dict): dict of instance annotations for a single instance. |
|
It will be modified in-place. |
|
transforms (TransformList or list[Transform]): |
|
image_size (tuple): the height, width of the transformed image |
|
keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`. |
|
|
|
Returns: |
|
dict: |
|
the same input dict with fields "bbox", "segmentation", "keypoints" |
|
transformed according to `transforms`. |
|
The "bbox_mode" field will be set to XYXY_ABS. |
|
""" |
|
if isinstance(transforms, (tuple, list)): |
|
transforms = T.TransformList(transforms) |
|
|
|
bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"], BoxMode.XYXY_ABS) |
|
|
|
bbox = transforms.apply_box(np.array([bbox]))[0].clip(min=0) |
|
annotation["bbox"] = np.minimum(bbox, list(image_size + image_size)[::-1]) |
|
annotation["bbox_mode"] = BoxMode.XYXY_ABS |
|
|
|
if "segmentation" in annotation: |
|
|
|
segm = annotation["segmentation"] |
|
if isinstance(segm, list): |
|
|
|
polygons = [np.asarray(p).reshape(-1, 2) for p in segm] |
|
annotation["segmentation"] = [ |
|
p.reshape(-1) for p in transforms.apply_polygons(polygons) |
|
] |
|
elif isinstance(segm, dict): |
|
|
|
mask = mask_util.decode(segm) |
|
mask = transforms.apply_segmentation(mask) |
|
assert tuple(mask.shape[:2]) == image_size |
|
annotation["segmentation"] = mask |
|
else: |
|
raise ValueError( |
|
"Cannot transform segmentation of type '{}'!" |
|
"Supported types are: polygons as list[list[float] or ndarray]," |
|
" COCO-style RLE as a dict.".format(type(segm)) |
|
) |
|
|
|
if "keypoints" in annotation: |
|
keypoints = transform_keypoint_annotations( |
|
annotation["keypoints"], transforms, image_size, keypoint_hflip_indices |
|
) |
|
annotation["keypoints"] = keypoints |
|
|
|
return annotation |
|
|
|
|
|
def transform_keypoint_annotations(keypoints, transforms, image_size, keypoint_hflip_indices=None): |
|
""" |
|
Transform keypoint annotations of an image. |
|
If a keypoint is transformed out of image boundary, it will be marked "unlabeled" (visibility=0) |
|
|
|
Args: |
|
keypoints (list[float]): Nx3 float in Detectron2's Dataset format. |
|
Each point is represented by (x, y, visibility). |
|
transforms (TransformList): |
|
image_size (tuple): the height, width of the transformed image |
|
keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`. |
|
When `transforms` includes horizontal flip, will use the index |
|
mapping to flip keypoints. |
|
""" |
|
|
|
keypoints = np.asarray(keypoints, dtype="float64").reshape(-1, 3) |
|
keypoints_xy = transforms.apply_coords(keypoints[:, :2]) |
|
|
|
|
|
inside = (keypoints_xy >= np.array([0, 0])) & (keypoints_xy <= np.array(image_size[::-1])) |
|
inside = inside.all(axis=1) |
|
keypoints[:, :2] = keypoints_xy |
|
keypoints[:, 2][~inside] = 0 |
|
|
|
|
|
do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if do_hflip: |
|
if keypoint_hflip_indices is None: |
|
raise ValueError("Cannot flip keypoints without providing flip indices!") |
|
if len(keypoints) != len(keypoint_hflip_indices): |
|
raise ValueError( |
|
"Keypoint data has {} points, but metadata " |
|
"contains {} points!".format(len(keypoints), len(keypoint_hflip_indices)) |
|
) |
|
keypoints = keypoints[np.asarray(keypoint_hflip_indices, dtype=np.int32), :] |
|
|
|
|
|
keypoints[keypoints[:, 2] == 0] = 0 |
|
return keypoints |
|
|
|
|
|
def annotations_to_instances(annos, image_size, mask_format="polygon"): |
|
""" |
|
Create an :class:`Instances` object used by the models, |
|
from instance annotations in the dataset dict. |
|
|
|
Args: |
|
annos (list[dict]): a list of instance annotations in one image, each |
|
element for one instance. |
|
image_size (tuple): height, width |
|
|
|
Returns: |
|
Instances: |
|
It will contain fields "gt_boxes", "gt_classes", |
|
"gt_masks", "gt_keypoints", if they can be obtained from `annos`. |
|
This is the format that builtin models expect. |
|
""" |
|
boxes = ( |
|
np.stack( |
|
[BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS) for obj in annos] |
|
) |
|
if len(annos) |
|
else np.zeros((0, 4)) |
|
) |
|
target = Instances(image_size) |
|
target.gt_boxes = Boxes(boxes) |
|
|
|
classes = [int(obj["category_id"]) for obj in annos] |
|
classes = torch.tensor(classes, dtype=torch.int64) |
|
target.gt_classes = classes |
|
|
|
if len(annos) and "segmentation" in annos[0]: |
|
segms = [obj["segmentation"] for obj in annos] |
|
if mask_format == "polygon": |
|
try: |
|
masks = PolygonMasks(segms) |
|
except ValueError as e: |
|
raise ValueError( |
|
"Failed to use mask_format=='polygon' from the given annotations!" |
|
) from e |
|
else: |
|
assert mask_format == "bitmask", mask_format |
|
masks = [] |
|
for segm in segms: |
|
if isinstance(segm, list): |
|
|
|
masks.append(polygons_to_bitmask(segm, *image_size)) |
|
elif isinstance(segm, dict): |
|
|
|
masks.append(mask_util.decode(segm)) |
|
elif isinstance(segm, np.ndarray): |
|
assert segm.ndim == 2, "Expect segmentation of 2 dimensions, got {}.".format( |
|
segm.ndim |
|
) |
|
|
|
masks.append(segm) |
|
else: |
|
raise ValueError( |
|
"Cannot convert segmentation of type '{}' to BitMasks!" |
|
"Supported types are: polygons as list[list[float] or ndarray]," |
|
" COCO-style RLE as a dict, or a binary segmentation mask " |
|
" in a 2D numpy array of shape HxW.".format(type(segm)) |
|
) |
|
|
|
masks = BitMasks( |
|
torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in masks]) |
|
) |
|
target.gt_masks = masks |
|
|
|
if len(annos) and "keypoints" in annos[0]: |
|
kpts = [obj.get("keypoints", []) for obj in annos] |
|
target.gt_keypoints = Keypoints(kpts) |
|
|
|
return target |
|
|
|
|
|
def annotations_to_instances_rotated(annos, image_size): |
|
""" |
|
Create an :class:`Instances` object used by the models, |
|
from instance annotations in the dataset dict. |
|
Compared to `annotations_to_instances`, this function is for rotated boxes only |
|
|
|
Args: |
|
annos (list[dict]): a list of instance annotations in one image, each |
|
element for one instance. |
|
image_size (tuple): height, width |
|
|
|
Returns: |
|
Instances: |
|
Containing fields "gt_boxes", "gt_classes", |
|
if they can be obtained from `annos`. |
|
This is the format that builtin models expect. |
|
""" |
|
boxes = [obj["bbox"] for obj in annos] |
|
target = Instances(image_size) |
|
boxes = target.gt_boxes = RotatedBoxes(boxes) |
|
boxes.clip(image_size) |
|
|
|
classes = [obj["category_id"] for obj in annos] |
|
classes = torch.tensor(classes, dtype=torch.int64) |
|
target.gt_classes = classes |
|
|
|
return target |
|
|
|
|
|
def filter_empty_instances( |
|
instances, by_box=True, by_mask=True, box_threshold=1e-5, return_mask=False |
|
): |
|
""" |
|
Filter out empty instances in an `Instances` object. |
|
|
|
Args: |
|
instances (Instances): |
|
by_box (bool): whether to filter out instances with empty boxes |
|
by_mask (bool): whether to filter out instances with empty masks |
|
box_threshold (float): minimum width and height to be considered non-empty |
|
return_mask (bool): whether to return boolean mask of filtered instances |
|
|
|
Returns: |
|
Instances: the filtered instances. |
|
tensor[bool], optional: boolean mask of filtered instances |
|
""" |
|
assert by_box or by_mask |
|
r = [] |
|
if by_box: |
|
r.append(instances.gt_boxes.nonempty(threshold=box_threshold)) |
|
if instances.has("gt_masks") and by_mask: |
|
r.append(instances.gt_masks.nonempty()) |
|
|
|
|
|
|
|
if not r: |
|
return instances |
|
m = r[0] |
|
for x in r[1:]: |
|
m = m & x |
|
if return_mask: |
|
return instances[m], m |
|
return instances[m] |
|
|
|
|
|
def create_keypoint_hflip_indices(dataset_names: Union[str, List[str]]) -> List[int]: |
|
""" |
|
Args: |
|
dataset_names: list of dataset names |
|
|
|
Returns: |
|
list[int]: a list of size=#keypoints, storing the |
|
horizontally-flipped keypoint indices. |
|
""" |
|
if isinstance(dataset_names, str): |
|
dataset_names = [dataset_names] |
|
|
|
check_metadata_consistency("keypoint_names", dataset_names) |
|
check_metadata_consistency("keypoint_flip_map", dataset_names) |
|
|
|
meta = MetadataCatalog.get(dataset_names[0]) |
|
names = meta.keypoint_names |
|
|
|
flip_map = dict(meta.keypoint_flip_map) |
|
flip_map.update({v: k for k, v in flip_map.items()}) |
|
flipped_names = [i if i not in flip_map else flip_map[i] for i in names] |
|
flip_indices = [names.index(i) for i in flipped_names] |
|
return flip_indices |
|
|
|
|
|
def get_fed_loss_cls_weights(dataset_names: Union[str, List[str]], freq_weight_power=1.0): |
|
""" |
|
Get frequency weight for each class sorted by class id. |
|
We now calcualte freqency weight using image_count to the power freq_weight_power. |
|
|
|
Args: |
|
dataset_names: list of dataset names |
|
freq_weight_power: power value |
|
""" |
|
if isinstance(dataset_names, str): |
|
dataset_names = [dataset_names] |
|
|
|
check_metadata_consistency("class_image_count", dataset_names) |
|
|
|
meta = MetadataCatalog.get(dataset_names[0]) |
|
class_freq_meta = meta.class_image_count |
|
class_freq = torch.tensor( |
|
[c["image_count"] for c in sorted(class_freq_meta, key=lambda x: x["id"])] |
|
) |
|
class_freq_weight = class_freq.float() ** freq_weight_power |
|
return class_freq_weight |
|
|
|
|
|
def gen_crop_transform_with_instance(crop_size, image_size, instance): |
|
""" |
|
Generate a CropTransform so that the cropping region contains |
|
the center of the given instance. |
|
|
|
Args: |
|
crop_size (tuple): h, w in pixels |
|
image_size (tuple): h, w |
|
instance (dict): an annotation dict of one instance, in Detectron2's |
|
dataset format. |
|
""" |
|
crop_size = np.asarray(crop_size, dtype=np.int32) |
|
bbox = BoxMode.convert(instance["bbox"], instance["bbox_mode"], BoxMode.XYXY_ABS) |
|
center_yx = (bbox[1] + bbox[3]) * 0.5, (bbox[0] + bbox[2]) * 0.5 |
|
assert ( |
|
image_size[0] >= center_yx[0] and image_size[1] >= center_yx[1] |
|
), "The annotation bounding box is outside of the image!" |
|
assert ( |
|
image_size[0] >= crop_size[0] and image_size[1] >= crop_size[1] |
|
), "Crop size is larger than image size!" |
|
|
|
min_yx = np.maximum(np.floor(center_yx).astype(np.int32) - crop_size, 0) |
|
max_yx = np.maximum(np.asarray(image_size, dtype=np.int32) - crop_size, 0) |
|
max_yx = np.minimum(max_yx, np.ceil(center_yx).astype(np.int32)) |
|
|
|
y0 = np.random.randint(min_yx[0], max_yx[0] + 1) |
|
x0 = np.random.randint(min_yx[1], max_yx[1] + 1) |
|
return T.CropTransform(x0, y0, crop_size[1], crop_size[0]) |
|
|
|
|
|
def check_metadata_consistency(key, dataset_names): |
|
""" |
|
Check that the datasets have consistent metadata. |
|
|
|
Args: |
|
key (str): a metadata key |
|
dataset_names (list[str]): a list of dataset names |
|
|
|
Raises: |
|
AttributeError: if the key does not exist in the metadata |
|
ValueError: if the given datasets do not have the same metadata values defined by key |
|
""" |
|
if len(dataset_names) == 0: |
|
return |
|
logger = logging.getLogger(__name__) |
|
entries_per_dataset = [getattr(MetadataCatalog.get(d), key) for d in dataset_names] |
|
for idx, entry in enumerate(entries_per_dataset): |
|
if entry != entries_per_dataset[0]: |
|
logger.error( |
|
"Metadata '{}' for dataset '{}' is '{}'".format(key, dataset_names[idx], str(entry)) |
|
) |
|
logger.error( |
|
"Metadata '{}' for dataset '{}' is '{}'".format( |
|
key, dataset_names[0], str(entries_per_dataset[0]) |
|
) |
|
) |
|
raise ValueError("Datasets have different metadata '{}'!".format(key)) |
|
|
|
|
|
def build_augmentation(cfg, is_train): |
|
""" |
|
Create a list of default :class:`Augmentation` from config. |
|
Now it includes resizing and flipping. |
|
|
|
Returns: |
|
list[Augmentation] |
|
""" |
|
if is_train: |
|
min_size = cfg.INPUT.MIN_SIZE_TRAIN |
|
max_size = cfg.INPUT.MAX_SIZE_TRAIN |
|
sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING |
|
else: |
|
min_size = cfg.INPUT.MIN_SIZE_TEST |
|
max_size = cfg.INPUT.MAX_SIZE_TEST |
|
sample_style = "choice" |
|
augmentation = [T.ResizeShortestEdge(min_size, max_size, sample_style)] |
|
if is_train and cfg.INPUT.RANDOM_FLIP != "none": |
|
augmentation.append( |
|
T.RandomFlip( |
|
horizontal=cfg.INPUT.RANDOM_FLIP == "horizontal", |
|
vertical=cfg.INPUT.RANDOM_FLIP == "vertical", |
|
) |
|
) |
|
return augmentation |
|
|
|
|
|
build_transform_gen = build_augmentation |
|
""" |
|
Alias for backward-compatibility. |
|
""" |
|
|