|
|
|
import contextlib |
|
import copy |
|
import itertools |
|
import logging |
|
import numpy as np |
|
import pickle |
|
import random |
|
from typing import Callable, Union |
|
import torch |
|
import torch.utils.data as data |
|
from torch.utils.data.sampler import Sampler |
|
|
|
from annotator.oneformer.detectron2.utils.serialize import PicklableWrapper |
|
|
|
__all__ = ["MapDataset", "DatasetFromList", "AspectRatioGroupedDataset", "ToIterableDataset"] |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def _shard_iterator_dataloader_worker(iterable): |
|
|
|
worker_info = data.get_worker_info() |
|
if worker_info is None or worker_info.num_workers == 1: |
|
|
|
yield from iterable |
|
else: |
|
yield from itertools.islice(iterable, worker_info.id, None, worker_info.num_workers) |
|
|
|
|
|
class _MapIterableDataset(data.IterableDataset): |
|
""" |
|
Map a function over elements in an IterableDataset. |
|
|
|
Similar to pytorch's MapIterDataPipe, but support filtering when map_func |
|
returns None. |
|
|
|
This class is not public-facing. Will be called by `MapDataset`. |
|
""" |
|
|
|
def __init__(self, dataset, map_func): |
|
self._dataset = dataset |
|
self._map_func = PicklableWrapper(map_func) |
|
|
|
def __len__(self): |
|
return len(self._dataset) |
|
|
|
def __iter__(self): |
|
for x in map(self._map_func, self._dataset): |
|
if x is not None: |
|
yield x |
|
|
|
|
|
class MapDataset(data.Dataset): |
|
""" |
|
Map a function over the elements in a dataset. |
|
""" |
|
|
|
def __init__(self, dataset, map_func): |
|
""" |
|
Args: |
|
dataset: a dataset where map function is applied. Can be either |
|
map-style or iterable dataset. When given an iterable dataset, |
|
the returned object will also be an iterable dataset. |
|
map_func: a callable which maps the element in dataset. map_func can |
|
return None to skip the data (e.g. in case of errors). |
|
How None is handled depends on the style of `dataset`. |
|
If `dataset` is map-style, it randomly tries other elements. |
|
If `dataset` is iterable, it skips the data and tries the next. |
|
""" |
|
self._dataset = dataset |
|
self._map_func = PicklableWrapper(map_func) |
|
|
|
self._rng = random.Random(42) |
|
self._fallback_candidates = set(range(len(dataset))) |
|
|
|
def __new__(cls, dataset, map_func): |
|
is_iterable = isinstance(dataset, data.IterableDataset) |
|
if is_iterable: |
|
return _MapIterableDataset(dataset, map_func) |
|
else: |
|
return super().__new__(cls) |
|
|
|
def __getnewargs__(self): |
|
return self._dataset, self._map_func |
|
|
|
def __len__(self): |
|
return len(self._dataset) |
|
|
|
def __getitem__(self, idx): |
|
retry_count = 0 |
|
cur_idx = int(idx) |
|
|
|
while True: |
|
data = self._map_func(self._dataset[cur_idx]) |
|
if data is not None: |
|
self._fallback_candidates.add(cur_idx) |
|
return data |
|
|
|
|
|
retry_count += 1 |
|
self._fallback_candidates.discard(cur_idx) |
|
cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0] |
|
|
|
if retry_count >= 3: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
"Failed to apply `_map_func` for idx: {}, retry count: {}".format( |
|
idx, retry_count |
|
) |
|
) |
|
|
|
|
|
class _TorchSerializedList(object): |
|
""" |
|
A list-like object whose items are serialized and stored in a torch tensor. When |
|
launching a process that uses TorchSerializedList with "fork" start method, |
|
the subprocess can read the same buffer without triggering copy-on-access. When |
|
launching a process that uses TorchSerializedList with "spawn/forkserver" start |
|
method, the list will be pickled by a special ForkingPickler registered by PyTorch |
|
that moves data to shared memory. In both cases, this allows parent and child |
|
processes to share RAM for the list data, hence avoids the issue in |
|
https://github.com/pytorch/pytorch/issues/13246. |
|
|
|
See also https://ppwwyyxx.com/blog/2022/Demystify-RAM-Usage-in-Multiprocess-DataLoader/ |
|
on how it works. |
|
""" |
|
|
|
def __init__(self, lst: list): |
|
self._lst = lst |
|
|
|
def _serialize(data): |
|
buffer = pickle.dumps(data, protocol=-1) |
|
return np.frombuffer(buffer, dtype=np.uint8) |
|
|
|
logger.info( |
|
"Serializing {} elements to byte tensors and concatenating them all ...".format( |
|
len(self._lst) |
|
) |
|
) |
|
self._lst = [_serialize(x) for x in self._lst] |
|
self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64) |
|
self._addr = torch.from_numpy(np.cumsum(self._addr)) |
|
self._lst = torch.from_numpy(np.concatenate(self._lst)) |
|
logger.info("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024**2)) |
|
|
|
def __len__(self): |
|
return len(self._addr) |
|
|
|
def __getitem__(self, idx): |
|
start_addr = 0 if idx == 0 else self._addr[idx - 1].item() |
|
end_addr = self._addr[idx].item() |
|
bytes = memoryview(self._lst[start_addr:end_addr].numpy()) |
|
|
|
|
|
return pickle.loads(bytes) |
|
|
|
|
|
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = _TorchSerializedList |
|
|
|
|
|
@contextlib.contextmanager |
|
def set_default_dataset_from_list_serialize_method(new): |
|
""" |
|
Context manager for using custom serialize function when creating DatasetFromList |
|
""" |
|
|
|
global _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD |
|
orig = _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD |
|
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = new |
|
yield |
|
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = orig |
|
|
|
|
|
class DatasetFromList(data.Dataset): |
|
""" |
|
Wrap a list to a torch Dataset. It produces elements of the list as data. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
lst: list, |
|
copy: bool = True, |
|
serialize: Union[bool, Callable] = True, |
|
): |
|
""" |
|
Args: |
|
lst (list): a list which contains elements to produce. |
|
copy (bool): whether to deepcopy the element when producing it, |
|
so that the result can be modified in place without affecting the |
|
source in the list. |
|
serialize (bool or callable): whether to serialize the stroage to other |
|
backend. If `True`, the default serialize method will be used, if given |
|
a callable, the callable will be used as serialize method. |
|
""" |
|
self._lst = lst |
|
self._copy = copy |
|
if not isinstance(serialize, (bool, Callable)): |
|
raise TypeError(f"Unsupported type for argument `serailzie`: {serialize}") |
|
self._serialize = serialize is not False |
|
|
|
if self._serialize: |
|
serialize_method = ( |
|
serialize |
|
if isinstance(serialize, Callable) |
|
else _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD |
|
) |
|
logger.info(f"Serializing the dataset using: {serialize_method}") |
|
self._lst = serialize_method(self._lst) |
|
|
|
def __len__(self): |
|
return len(self._lst) |
|
|
|
def __getitem__(self, idx): |
|
if self._copy and not self._serialize: |
|
return copy.deepcopy(self._lst[idx]) |
|
else: |
|
return self._lst[idx] |
|
|
|
|
|
class ToIterableDataset(data.IterableDataset): |
|
""" |
|
Convert an old indices-based (also called map-style) dataset |
|
to an iterable-style dataset. |
|
""" |
|
|
|
def __init__(self, dataset: data.Dataset, sampler: Sampler, shard_sampler: bool = True): |
|
""" |
|
Args: |
|
dataset: an old-style dataset with ``__getitem__`` |
|
sampler: a cheap iterable that produces indices to be applied on ``dataset``. |
|
shard_sampler: whether to shard the sampler based on the current pytorch data loader |
|
worker id. When an IterableDataset is forked by pytorch's DataLoader into multiple |
|
workers, it is responsible for sharding its data based on worker id so that workers |
|
don't produce identical data. |
|
|
|
Most samplers (like our TrainingSampler) do not shard based on dataloader worker id |
|
and this argument should be set to True. But certain samplers may be already |
|
sharded, in that case this argument should be set to False. |
|
""" |
|
assert not isinstance(dataset, data.IterableDataset), dataset |
|
assert isinstance(sampler, Sampler), sampler |
|
self.dataset = dataset |
|
self.sampler = sampler |
|
self.shard_sampler = shard_sampler |
|
|
|
def __iter__(self): |
|
if not self.shard_sampler: |
|
sampler = self.sampler |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
sampler = _shard_iterator_dataloader_worker(self.sampler) |
|
for idx in sampler: |
|
yield self.dataset[idx] |
|
|
|
def __len__(self): |
|
return len(self.sampler) |
|
|
|
|
|
class AspectRatioGroupedDataset(data.IterableDataset): |
|
""" |
|
Batch data that have similar aspect ratio together. |
|
In this implementation, images whose aspect ratio < (or >) 1 will |
|
be batched together. |
|
This improves training speed because the images then need less padding |
|
to form a batch. |
|
|
|
It assumes the underlying dataset produces dicts with "width" and "height" keys. |
|
It will then produce a list of original dicts with length = batch_size, |
|
all with similar aspect ratios. |
|
""" |
|
|
|
def __init__(self, dataset, batch_size): |
|
""" |
|
Args: |
|
dataset: an iterable. Each element must be a dict with keys |
|
"width" and "height", which will be used to batch data. |
|
batch_size (int): |
|
""" |
|
self.dataset = dataset |
|
self.batch_size = batch_size |
|
self._buckets = [[] for _ in range(2)] |
|
|
|
|
|
|
|
def __iter__(self): |
|
for d in self.dataset: |
|
w, h = d["width"], d["height"] |
|
bucket_id = 0 if w > h else 1 |
|
bucket = self._buckets[bucket_id] |
|
bucket.append(d) |
|
if len(bucket) == self.batch_size: |
|
data = bucket[:] |
|
|
|
|
|
del bucket[:] |
|
yield data |
|
|