|
import os |
|
import os.path as osp |
|
from collections import OrderedDict |
|
from functools import reduce |
|
|
|
import annotator.mmpkg.mmcv as mmcv |
|
import numpy as np |
|
from annotator.mmpkg.mmcv.utils import print_log |
|
from torch.utils.data import Dataset |
|
|
|
from annotator.mmpkg.mmseg.core import eval_metrics |
|
from annotator.mmpkg.mmseg.utils import get_root_logger |
|
from .builder import DATASETS |
|
from .pipelines import Compose |
|
|
|
|
|
@DATASETS.register_module() |
|
class CustomDataset(Dataset): |
|
"""Custom dataset for semantic segmentation. An example of file structure |
|
is as followed. |
|
|
|
.. code-block:: none |
|
|
|
βββ data |
|
β βββ my_dataset |
|
β β βββ img_dir |
|
β β β βββ train |
|
β β β β βββ xxx{img_suffix} |
|
β β β β βββ yyy{img_suffix} |
|
β β β β βββ zzz{img_suffix} |
|
β β β βββ val |
|
β β βββ ann_dir |
|
β β β βββ train |
|
β β β β βββ xxx{seg_map_suffix} |
|
β β β β βββ yyy{seg_map_suffix} |
|
β β β β βββ zzz{seg_map_suffix} |
|
β β β βββ val |
|
|
|
The img/gt_semantic_seg pair of CustomDataset should be of the same |
|
except suffix. A valid img/gt_semantic_seg filename pair should be like |
|
``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included |
|
in the suffix). If split is given, then ``xxx`` is specified in txt file. |
|
Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded. |
|
Please refer to ``docs/tutorials/new_dataset.md`` for more details. |
|
|
|
|
|
Args: |
|
pipeline (list[dict]): Processing pipeline |
|
img_dir (str): Path to image directory |
|
img_suffix (str): Suffix of images. Default: '.jpg' |
|
ann_dir (str, optional): Path to annotation directory. Default: None |
|
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' |
|
split (str, optional): Split txt file. If split is specified, only |
|
file with suffix in the splits will be loaded. Otherwise, all |
|
images in img_dir/ann_dir will be loaded. Default: None |
|
data_root (str, optional): Data root for img_dir/ann_dir. Default: |
|
None. |
|
test_mode (bool): If test_mode=True, gt wouldn't be loaded. |
|
ignore_index (int): The label index to be ignored. Default: 255 |
|
reduce_zero_label (bool): Whether to mark label zero as ignored. |
|
Default: False |
|
classes (str | Sequence[str], optional): Specify classes to load. |
|
If is None, ``cls.CLASSES`` will be used. Default: None. |
|
palette (Sequence[Sequence[int]]] | np.ndarray | None): |
|
The palette of segmentation map. If None is given, and |
|
self.PALETTE is None, random palette will be generated. |
|
Default: None |
|
""" |
|
|
|
CLASSES = None |
|
|
|
PALETTE = None |
|
|
|
def __init__(self, |
|
pipeline, |
|
img_dir, |
|
img_suffix='.jpg', |
|
ann_dir=None, |
|
seg_map_suffix='.png', |
|
split=None, |
|
data_root=None, |
|
test_mode=False, |
|
ignore_index=255, |
|
reduce_zero_label=False, |
|
classes=None, |
|
palette=None): |
|
self.pipeline = Compose(pipeline) |
|
self.img_dir = img_dir |
|
self.img_suffix = img_suffix |
|
self.ann_dir = ann_dir |
|
self.seg_map_suffix = seg_map_suffix |
|
self.split = split |
|
self.data_root = data_root |
|
self.test_mode = test_mode |
|
self.ignore_index = ignore_index |
|
self.reduce_zero_label = reduce_zero_label |
|
self.label_map = None |
|
self.CLASSES, self.PALETTE = self.get_classes_and_palette( |
|
classes, palette) |
|
|
|
|
|
if self.data_root is not None: |
|
if not osp.isabs(self.img_dir): |
|
self.img_dir = osp.join(self.data_root, self.img_dir) |
|
if not (self.ann_dir is None or osp.isabs(self.ann_dir)): |
|
self.ann_dir = osp.join(self.data_root, self.ann_dir) |
|
if not (self.split is None or osp.isabs(self.split)): |
|
self.split = osp.join(self.data_root, self.split) |
|
|
|
|
|
self.img_infos = self.load_annotations(self.img_dir, self.img_suffix, |
|
self.ann_dir, |
|
self.seg_map_suffix, self.split) |
|
|
|
def __len__(self): |
|
"""Total number of samples of data.""" |
|
return len(self.img_infos) |
|
|
|
def load_annotations(self, img_dir, img_suffix, ann_dir, seg_map_suffix, |
|
split): |
|
"""Load annotation from directory. |
|
|
|
Args: |
|
img_dir (str): Path to image directory |
|
img_suffix (str): Suffix of images. |
|
ann_dir (str|None): Path to annotation directory. |
|
seg_map_suffix (str|None): Suffix of segmentation maps. |
|
split (str|None): Split txt file. If split is specified, only file |
|
with suffix in the splits will be loaded. Otherwise, all images |
|
in img_dir/ann_dir will be loaded. Default: None |
|
|
|
Returns: |
|
list[dict]: All image info of dataset. |
|
""" |
|
|
|
img_infos = [] |
|
if split is not None: |
|
with open(split) as f: |
|
for line in f: |
|
img_name = line.strip() |
|
img_info = dict(filename=img_name + img_suffix) |
|
if ann_dir is not None: |
|
seg_map = img_name + seg_map_suffix |
|
img_info['ann'] = dict(seg_map=seg_map) |
|
img_infos.append(img_info) |
|
else: |
|
for img in mmcv.scandir(img_dir, img_suffix, recursive=True): |
|
img_info = dict(filename=img) |
|
if ann_dir is not None: |
|
seg_map = img.replace(img_suffix, seg_map_suffix) |
|
img_info['ann'] = dict(seg_map=seg_map) |
|
img_infos.append(img_info) |
|
|
|
print_log(f'Loaded {len(img_infos)} images', logger=get_root_logger()) |
|
return img_infos |
|
|
|
def get_ann_info(self, idx): |
|
"""Get annotation by index. |
|
|
|
Args: |
|
idx (int): Index of data. |
|
|
|
Returns: |
|
dict: Annotation info of specified index. |
|
""" |
|
|
|
return self.img_infos[idx]['ann'] |
|
|
|
def pre_pipeline(self, results): |
|
"""Prepare results dict for pipeline.""" |
|
results['seg_fields'] = [] |
|
results['img_prefix'] = self.img_dir |
|
results['seg_prefix'] = self.ann_dir |
|
if self.custom_classes: |
|
results['label_map'] = self.label_map |
|
|
|
def __getitem__(self, idx): |
|
"""Get training/test data after pipeline. |
|
|
|
Args: |
|
idx (int): Index of data. |
|
|
|
Returns: |
|
dict: Training/test data (with annotation if `test_mode` is set |
|
False). |
|
""" |
|
|
|
if self.test_mode: |
|
return self.prepare_test_img(idx) |
|
else: |
|
return self.prepare_train_img(idx) |
|
|
|
def prepare_train_img(self, idx): |
|
"""Get training data and annotations after pipeline. |
|
|
|
Args: |
|
idx (int): Index of data. |
|
|
|
Returns: |
|
dict: Training data and annotation after pipeline with new keys |
|
introduced by pipeline. |
|
""" |
|
|
|
img_info = self.img_infos[idx] |
|
ann_info = self.get_ann_info(idx) |
|
results = dict(img_info=img_info, ann_info=ann_info) |
|
self.pre_pipeline(results) |
|
return self.pipeline(results) |
|
|
|
def prepare_test_img(self, idx): |
|
"""Get testing data after pipeline. |
|
|
|
Args: |
|
idx (int): Index of data. |
|
|
|
Returns: |
|
dict: Testing data after pipeline with new keys introduced by |
|
pipeline. |
|
""" |
|
|
|
img_info = self.img_infos[idx] |
|
results = dict(img_info=img_info) |
|
self.pre_pipeline(results) |
|
return self.pipeline(results) |
|
|
|
def format_results(self, results, **kwargs): |
|
"""Place holder to format result to dataset specific output.""" |
|
|
|
def get_gt_seg_maps(self, efficient_test=False): |
|
"""Get ground truth segmentation maps for evaluation.""" |
|
gt_seg_maps = [] |
|
for img_info in self.img_infos: |
|
seg_map = osp.join(self.ann_dir, img_info['ann']['seg_map']) |
|
if efficient_test: |
|
gt_seg_map = seg_map |
|
else: |
|
gt_seg_map = mmcv.imread( |
|
seg_map, flag='unchanged', backend='pillow') |
|
gt_seg_maps.append(gt_seg_map) |
|
return gt_seg_maps |
|
|
|
def get_classes_and_palette(self, classes=None, palette=None): |
|
"""Get class names of current dataset. |
|
|
|
Args: |
|
classes (Sequence[str] | str | None): If classes is None, use |
|
default CLASSES defined by builtin dataset. If classes is a |
|
string, take it as a file name. The file contains the name of |
|
classes where each line contains one class name. If classes is |
|
a tuple or list, override the CLASSES defined by the dataset. |
|
palette (Sequence[Sequence[int]]] | np.ndarray | None): |
|
The palette of segmentation map. If None is given, random |
|
palette will be generated. Default: None |
|
""" |
|
if classes is None: |
|
self.custom_classes = False |
|
return self.CLASSES, self.PALETTE |
|
|
|
self.custom_classes = True |
|
if isinstance(classes, str): |
|
|
|
class_names = mmcv.list_from_file(classes) |
|
elif isinstance(classes, (tuple, list)): |
|
class_names = classes |
|
else: |
|
raise ValueError(f'Unsupported type {type(classes)} of classes.') |
|
|
|
if self.CLASSES: |
|
if not set(classes).issubset(self.CLASSES): |
|
raise ValueError('classes is not a subset of CLASSES.') |
|
|
|
|
|
|
|
|
|
self.label_map = {} |
|
for i, c in enumerate(self.CLASSES): |
|
if c not in class_names: |
|
self.label_map[i] = -1 |
|
else: |
|
self.label_map[i] = classes.index(c) |
|
|
|
palette = self.get_palette_for_custom_classes(class_names, palette) |
|
|
|
return class_names, palette |
|
|
|
def get_palette_for_custom_classes(self, class_names, palette=None): |
|
|
|
if self.label_map is not None: |
|
|
|
palette = [] |
|
for old_id, new_id in sorted( |
|
self.label_map.items(), key=lambda x: x[1]): |
|
if new_id != -1: |
|
palette.append(self.PALETTE[old_id]) |
|
palette = type(self.PALETTE)(palette) |
|
|
|
elif palette is None: |
|
if self.PALETTE is None: |
|
palette = np.random.randint(0, 255, size=(len(class_names), 3)) |
|
else: |
|
palette = self.PALETTE |
|
|
|
return palette |
|
|
|
def evaluate(self, |
|
results, |
|
metric='mIoU', |
|
logger=None, |
|
efficient_test=False, |
|
**kwargs): |
|
"""Evaluate the dataset. |
|
|
|
Args: |
|
results (list): Testing results of the dataset. |
|
metric (str | list[str]): Metrics to be evaluated. 'mIoU', |
|
'mDice' and 'mFscore' are supported. |
|
logger (logging.Logger | None | str): Logger used for printing |
|
related information during evaluation. Default: None. |
|
|
|
Returns: |
|
dict[str, float]: Default metrics. |
|
""" |
|
|
|
if isinstance(metric, str): |
|
metric = [metric] |
|
allowed_metrics = ['mIoU', 'mDice', 'mFscore'] |
|
if not set(metric).issubset(set(allowed_metrics)): |
|
raise KeyError('metric {} is not supported'.format(metric)) |
|
eval_results = {} |
|
gt_seg_maps = self.get_gt_seg_maps(efficient_test) |
|
if self.CLASSES is None: |
|
num_classes = len( |
|
reduce(np.union1d, [np.unique(_) for _ in gt_seg_maps])) |
|
else: |
|
num_classes = len(self.CLASSES) |
|
ret_metrics = eval_metrics( |
|
results, |
|
gt_seg_maps, |
|
num_classes, |
|
self.ignore_index, |
|
metric, |
|
label_map=self.label_map, |
|
reduce_zero_label=self.reduce_zero_label) |
|
|
|
if self.CLASSES is None: |
|
class_names = tuple(range(num_classes)) |
|
else: |
|
class_names = self.CLASSES |
|
|
|
|
|
ret_metrics_summary = OrderedDict({ |
|
ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2) |
|
for ret_metric, ret_metric_value in ret_metrics.items() |
|
}) |
|
|
|
|
|
ret_metrics.pop('aAcc', None) |
|
ret_metrics_class = OrderedDict({ |
|
ret_metric: np.round(ret_metric_value * 100, 2) |
|
for ret_metric, ret_metric_value in ret_metrics.items() |
|
}) |
|
ret_metrics_class.update({'Class': class_names}) |
|
ret_metrics_class.move_to_end('Class', last=False) |
|
|
|
try: |
|
from prettytable import PrettyTable |
|
|
|
class_table_data = PrettyTable() |
|
for key, val in ret_metrics_class.items(): |
|
class_table_data.add_column(key, val) |
|
|
|
summary_table_data = PrettyTable() |
|
for key, val in ret_metrics_summary.items(): |
|
if key == 'aAcc': |
|
summary_table_data.add_column(key, [val]) |
|
else: |
|
summary_table_data.add_column('m' + key, [val]) |
|
|
|
print_log('per class results:', logger) |
|
print_log('\n' + class_table_data.get_string(), logger=logger) |
|
print_log('Summary:', logger) |
|
print_log('\n' + summary_table_data.get_string(), logger=logger) |
|
except ImportError: |
|
pass |
|
|
|
|
|
for key, value in ret_metrics_summary.items(): |
|
if key == 'aAcc': |
|
eval_results[key] = value / 100.0 |
|
else: |
|
eval_results['m' + key] = value / 100.0 |
|
|
|
ret_metrics_class.pop('Class', None) |
|
for key, value in ret_metrics_class.items(): |
|
eval_results.update({ |
|
key + '.' + str(name): value[idx] / 100.0 |
|
for idx, name in enumerate(class_names) |
|
}) |
|
|
|
if mmcv.is_list_of(results, str): |
|
for file_name in results: |
|
os.remove(file_name) |
|
return eval_results |
|
|