|
|
|
from typing import Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn.modules.utils import _pair, _single |
|
|
|
from annotator.mmpkg.mmcv.utils import deprecated_api_warning |
|
from ..cnn import CONV_LAYERS |
|
from ..utils import ext_loader, print_log |
|
|
|
ext_module = ext_loader.load_ext('_ext', [ |
|
'deform_conv_forward', 'deform_conv_backward_input', |
|
'deform_conv_backward_parameters' |
|
]) |
|
|
|
|
|
class DeformConv2dFunction(Function): |
|
|
|
@staticmethod |
|
def symbolic(g, |
|
input, |
|
offset, |
|
weight, |
|
stride, |
|
padding, |
|
dilation, |
|
groups, |
|
deform_groups, |
|
bias=False, |
|
im2col_step=32): |
|
return g.op( |
|
'mmcv::MMCVDeformConv2d', |
|
input, |
|
offset, |
|
weight, |
|
stride_i=stride, |
|
padding_i=padding, |
|
dilation_i=dilation, |
|
groups_i=groups, |
|
deform_groups_i=deform_groups, |
|
bias_i=bias, |
|
im2col_step_i=im2col_step) |
|
|
|
@staticmethod |
|
def forward(ctx, |
|
input, |
|
offset, |
|
weight, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deform_groups=1, |
|
bias=False, |
|
im2col_step=32): |
|
if input is not None and input.dim() != 4: |
|
raise ValueError( |
|
f'Expected 4D tensor as input, got {input.dim()}D tensor \ |
|
instead.') |
|
assert bias is False, 'Only support bias is False.' |
|
ctx.stride = _pair(stride) |
|
ctx.padding = _pair(padding) |
|
ctx.dilation = _pair(dilation) |
|
ctx.groups = groups |
|
ctx.deform_groups = deform_groups |
|
ctx.im2col_step = im2col_step |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input = input.type_as(offset) |
|
weight = weight.type_as(input) |
|
ctx.save_for_backward(input, offset, weight) |
|
|
|
output = input.new_empty( |
|
DeformConv2dFunction._output_size(ctx, input, weight)) |
|
|
|
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] |
|
|
|
cur_im2col_step = min(ctx.im2col_step, input.size(0)) |
|
assert (input.size(0) % |
|
cur_im2col_step) == 0, 'im2col step must divide batchsize' |
|
ext_module.deform_conv_forward( |
|
input, |
|
weight, |
|
offset, |
|
output, |
|
ctx.bufs_[0], |
|
ctx.bufs_[1], |
|
kW=weight.size(3), |
|
kH=weight.size(2), |
|
dW=ctx.stride[1], |
|
dH=ctx.stride[0], |
|
padW=ctx.padding[1], |
|
padH=ctx.padding[0], |
|
dilationW=ctx.dilation[1], |
|
dilationH=ctx.dilation[0], |
|
group=ctx.groups, |
|
deformable_group=ctx.deform_groups, |
|
im2col_step=cur_im2col_step) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
input, offset, weight = ctx.saved_tensors |
|
|
|
grad_input = grad_offset = grad_weight = None |
|
|
|
cur_im2col_step = min(ctx.im2col_step, input.size(0)) |
|
assert (input.size(0) % cur_im2col_step |
|
) == 0, 'batch size must be divisible by im2col_step' |
|
|
|
grad_output = grad_output.contiguous() |
|
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: |
|
grad_input = torch.zeros_like(input) |
|
grad_offset = torch.zeros_like(offset) |
|
ext_module.deform_conv_backward_input( |
|
input, |
|
offset, |
|
grad_output, |
|
grad_input, |
|
grad_offset, |
|
weight, |
|
ctx.bufs_[0], |
|
kW=weight.size(3), |
|
kH=weight.size(2), |
|
dW=ctx.stride[1], |
|
dH=ctx.stride[0], |
|
padW=ctx.padding[1], |
|
padH=ctx.padding[0], |
|
dilationW=ctx.dilation[1], |
|
dilationH=ctx.dilation[0], |
|
group=ctx.groups, |
|
deformable_group=ctx.deform_groups, |
|
im2col_step=cur_im2col_step) |
|
|
|
if ctx.needs_input_grad[2]: |
|
grad_weight = torch.zeros_like(weight) |
|
ext_module.deform_conv_backward_parameters( |
|
input, |
|
offset, |
|
grad_output, |
|
grad_weight, |
|
ctx.bufs_[0], |
|
ctx.bufs_[1], |
|
kW=weight.size(3), |
|
kH=weight.size(2), |
|
dW=ctx.stride[1], |
|
dH=ctx.stride[0], |
|
padW=ctx.padding[1], |
|
padH=ctx.padding[0], |
|
dilationW=ctx.dilation[1], |
|
dilationH=ctx.dilation[0], |
|
group=ctx.groups, |
|
deformable_group=ctx.deform_groups, |
|
scale=1, |
|
im2col_step=cur_im2col_step) |
|
|
|
return grad_input, grad_offset, grad_weight, \ |
|
None, None, None, None, None, None, None |
|
|
|
@staticmethod |
|
def _output_size(ctx, input, weight): |
|
channels = weight.size(0) |
|
output_size = (input.size(0), channels) |
|
for d in range(input.dim() - 2): |
|
in_size = input.size(d + 2) |
|
pad = ctx.padding[d] |
|
kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1 |
|
stride_ = ctx.stride[d] |
|
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, ) |
|
if not all(map(lambda s: s > 0, output_size)): |
|
raise ValueError( |
|
'convolution input is too small (output would be ' + |
|
'x'.join(map(str, output_size)) + ')') |
|
return output_size |
|
|
|
|
|
deform_conv2d = DeformConv2dFunction.apply |
|
|
|
|
|
class DeformConv2d(nn.Module): |
|
r"""Deformable 2D convolution. |
|
|
|
Applies a deformable 2D convolution over an input signal composed of |
|
several input planes. DeformConv2d was described in the paper |
|
`Deformable Convolutional Networks |
|
<https://arxiv.org/pdf/1703.06211.pdf>`_ |
|
|
|
Note: |
|
The argument ``im2col_step`` was added in version 1.3.17, which means |
|
number of samples processed by the ``im2col_cuda_kernel`` per call. |
|
It enables users to define ``batch_size`` and ``im2col_step`` more |
|
flexibly and solved `issue mmcv#1440 |
|
<https://github.com/open-mmlab/mmcv/issues/1440>`_. |
|
|
|
Args: |
|
in_channels (int): Number of channels in the input image. |
|
out_channels (int): Number of channels produced by the convolution. |
|
kernel_size(int, tuple): Size of the convolving kernel. |
|
stride(int, tuple): Stride of the convolution. Default: 1. |
|
padding (int or tuple): Zero-padding added to both sides of the input. |
|
Default: 0. |
|
dilation (int or tuple): Spacing between kernel elements. Default: 1. |
|
groups (int): Number of blocked connections from input. |
|
channels to output channels. Default: 1. |
|
deform_groups (int): Number of deformable group partitions. |
|
bias (bool): If True, adds a learnable bias to the output. |
|
Default: False. |
|
im2col_step (int): Number of samples processed by im2col_cuda_kernel |
|
per call. It will work when ``batch_size`` > ``im2col_step``, but |
|
``batch_size`` must be divisible by ``im2col_step``. Default: 32. |
|
`New in version 1.3.17.` |
|
""" |
|
|
|
@deprecated_api_warning({'deformable_groups': 'deform_groups'}, |
|
cls_name='DeformConv2d') |
|
def __init__(self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: Union[int, Tuple[int, ...]], |
|
stride: Union[int, Tuple[int, ...]] = 1, |
|
padding: Union[int, Tuple[int, ...]] = 0, |
|
dilation: Union[int, Tuple[int, ...]] = 1, |
|
groups: int = 1, |
|
deform_groups: int = 1, |
|
bias: bool = False, |
|
im2col_step: int = 32) -> None: |
|
super(DeformConv2d, self).__init__() |
|
|
|
assert not bias, \ |
|
f'bias={bias} is not supported in DeformConv2d.' |
|
assert in_channels % groups == 0, \ |
|
f'in_channels {in_channels} cannot be divisible by groups {groups}' |
|
assert out_channels % groups == 0, \ |
|
f'out_channels {out_channels} cannot be divisible by groups \ |
|
{groups}' |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = _pair(kernel_size) |
|
self.stride = _pair(stride) |
|
self.padding = _pair(padding) |
|
self.dilation = _pair(dilation) |
|
self.groups = groups |
|
self.deform_groups = deform_groups |
|
self.im2col_step = im2col_step |
|
|
|
self.transposed = False |
|
self.output_padding = _single(0) |
|
|
|
|
|
self.weight = nn.Parameter( |
|
torch.Tensor(out_channels, in_channels // self.groups, |
|
*self.kernel_size)) |
|
|
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
|
|
|
|
|
|
|
|
nn.init.kaiming_uniform_(self.weight, nonlinearity='relu') |
|
|
|
def forward(self, x: Tensor, offset: Tensor) -> Tensor: |
|
"""Deformable Convolutional forward function. |
|
|
|
Args: |
|
x (Tensor): Input feature, shape (B, C_in, H_in, W_in) |
|
offset (Tensor): Offset for deformable convolution, shape |
|
(B, deform_groups*kernel_size[0]*kernel_size[1]*2, |
|
H_out, W_out), H_out, W_out are equal to the output's. |
|
|
|
An offset is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`. |
|
The spatial arrangement is like: |
|
|
|
.. code:: text |
|
|
|
(x0, y0) (x1, y1) (x2, y2) |
|
(x3, y3) (x4, y4) (x5, y5) |
|
(x6, y6) (x7, y7) (x8, y8) |
|
|
|
Returns: |
|
Tensor: Output of the layer. |
|
""" |
|
|
|
|
|
input_pad = (x.size(2) < self.kernel_size[0]) or (x.size(3) < |
|
self.kernel_size[1]) |
|
if input_pad: |
|
pad_h = max(self.kernel_size[0] - x.size(2), 0) |
|
pad_w = max(self.kernel_size[1] - x.size(3), 0) |
|
x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous() |
|
offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0) |
|
offset = offset.contiguous() |
|
out = deform_conv2d(x, offset, self.weight, self.stride, self.padding, |
|
self.dilation, self.groups, self.deform_groups, |
|
False, self.im2col_step) |
|
if input_pad: |
|
out = out[:, :, :out.size(2) - pad_h, :out.size(3) - |
|
pad_w].contiguous() |
|
return out |
|
|
|
def __repr__(self): |
|
s = self.__class__.__name__ |
|
s += f'(in_channels={self.in_channels},\n' |
|
s += f'out_channels={self.out_channels},\n' |
|
s += f'kernel_size={self.kernel_size},\n' |
|
s += f'stride={self.stride},\n' |
|
s += f'padding={self.padding},\n' |
|
s += f'dilation={self.dilation},\n' |
|
s += f'groups={self.groups},\n' |
|
s += f'deform_groups={self.deform_groups},\n' |
|
|
|
s += 'bias=False)' |
|
return s |
|
|
|
|
|
@CONV_LAYERS.register_module('DCN') |
|
class DeformConv2dPack(DeformConv2d): |
|
"""A Deformable Conv Encapsulation that acts as normal Conv layers. |
|
|
|
The offset tensor is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`. |
|
The spatial arrangement is like: |
|
|
|
.. code:: text |
|
|
|
(x0, y0) (x1, y1) (x2, y2) |
|
(x3, y3) (x4, y4) (x5, y5) |
|
(x6, y6) (x7, y7) (x8, y8) |
|
|
|
Args: |
|
in_channels (int): Same as nn.Conv2d. |
|
out_channels (int): Same as nn.Conv2d. |
|
kernel_size (int or tuple[int]): Same as nn.Conv2d. |
|
stride (int or tuple[int]): Same as nn.Conv2d. |
|
padding (int or tuple[int]): Same as nn.Conv2d. |
|
dilation (int or tuple[int]): Same as nn.Conv2d. |
|
groups (int): Same as nn.Conv2d. |
|
bias (bool or str): If specified as `auto`, it will be decided by the |
|
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise |
|
False. |
|
""" |
|
|
|
_version = 2 |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(DeformConv2dPack, self).__init__(*args, **kwargs) |
|
self.conv_offset = nn.Conv2d( |
|
self.in_channels, |
|
self.deform_groups * 2 * self.kernel_size[0] * self.kernel_size[1], |
|
kernel_size=self.kernel_size, |
|
stride=_pair(self.stride), |
|
padding=_pair(self.padding), |
|
dilation=_pair(self.dilation), |
|
bias=True) |
|
self.init_offset() |
|
|
|
def init_offset(self): |
|
self.conv_offset.weight.data.zero_() |
|
self.conv_offset.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
offset = self.conv_offset(x) |
|
return deform_conv2d(x, offset, self.weight, self.stride, self.padding, |
|
self.dilation, self.groups, self.deform_groups, |
|
False, self.im2col_step) |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, |
|
missing_keys, unexpected_keys, error_msgs): |
|
version = local_metadata.get('version', None) |
|
|
|
if version is None or version < 2: |
|
|
|
|
|
if (prefix + 'conv_offset.weight' not in state_dict |
|
and prefix[:-1] + '_offset.weight' in state_dict): |
|
state_dict[prefix + 'conv_offset.weight'] = state_dict.pop( |
|
prefix[:-1] + '_offset.weight') |
|
if (prefix + 'conv_offset.bias' not in state_dict |
|
and prefix[:-1] + '_offset.bias' in state_dict): |
|
state_dict[prefix + |
|
'conv_offset.bias'] = state_dict.pop(prefix[:-1] + |
|
'_offset.bias') |
|
|
|
if version is not None and version > 1: |
|
print_log( |
|
f'DeformConv2dPack {prefix.rstrip(".")} is upgraded to ' |
|
'version 2.', |
|
logger='root') |
|
|
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, |
|
strict, missing_keys, unexpected_keys, |
|
error_msgs) |
|
|