|
|
|
import warnings |
|
from typing import Callable, List, Optional, Union |
|
|
|
import torch |
|
|
|
from ..dist_utils import master_only |
|
from .hook import HOOKS, Hook |
|
|
|
|
|
@HOOKS.register_module() |
|
class ProfilerHook(Hook): |
|
"""Profiler to analyze performance during training. |
|
|
|
PyTorch Profiler is a tool that allows the collection of the performance |
|
metrics during the training. More details on Profiler can be found at |
|
https://pytorch.org/docs/1.8.1/profiler.html#torch.profiler.profile |
|
|
|
Args: |
|
by_epoch (bool): Profile performance by epoch or by iteration. |
|
Default: True. |
|
profile_iters (int): Number of iterations for profiling. |
|
If ``by_epoch=True``, profile_iters indicates that they are the |
|
first profile_iters epochs at the beginning of the |
|
training, otherwise it indicates the first profile_iters |
|
iterations. Default: 1. |
|
activities (list[str]): List of activity groups (CPU, CUDA) to use in |
|
profiling. Default: ['cpu', 'cuda']. |
|
schedule (dict, optional): Config of generating the callable schedule. |
|
if schedule is None, profiler will not add step markers into the |
|
trace and table view. Default: None. |
|
on_trace_ready (callable, dict): Either a handler or a dict of generate |
|
handler. Default: None. |
|
record_shapes (bool): Save information about operator's input shapes. |
|
Default: False. |
|
profile_memory (bool): Track tensor memory allocation/deallocation. |
|
Default: False. |
|
with_stack (bool): Record source information (file and line number) |
|
for the ops. Default: False. |
|
with_flops (bool): Use formula to estimate the FLOPS of specific |
|
operators (matrix multiplication and 2D convolution). |
|
Default: False. |
|
json_trace_path (str, optional): Exports the collected trace in Chrome |
|
JSON format. Default: None. |
|
|
|
Example: |
|
>>> runner = ... # instantiate a Runner |
|
>>> # tensorboard trace |
|
>>> trace_config = dict(type='tb_trace', dir_name='work_dir') |
|
>>> profiler_config = dict(on_trace_ready=trace_config) |
|
>>> runner.register_profiler_hook(profiler_config) |
|
>>> runner.run(data_loaders=[trainloader], workflow=[('train', 1)]) |
|
""" |
|
|
|
def __init__(self, |
|
by_epoch: bool = True, |
|
profile_iters: int = 1, |
|
activities: List[str] = ['cpu', 'cuda'], |
|
schedule: Optional[dict] = None, |
|
on_trace_ready: Optional[Union[Callable, dict]] = None, |
|
record_shapes: bool = False, |
|
profile_memory: bool = False, |
|
with_stack: bool = False, |
|
with_flops: bool = False, |
|
json_trace_path: Optional[str] = None) -> None: |
|
try: |
|
from torch import profiler |
|
except ImportError: |
|
raise ImportError('profiler is the new feature of torch1.8.1, ' |
|
f'but your version is {torch.__version__}') |
|
|
|
assert isinstance(by_epoch, bool), '``by_epoch`` should be a boolean.' |
|
self.by_epoch = by_epoch |
|
|
|
if profile_iters < 1: |
|
raise ValueError('profile_iters should be greater than 0, but got ' |
|
f'{profile_iters}') |
|
self.profile_iters = profile_iters |
|
|
|
if not isinstance(activities, list): |
|
raise ValueError( |
|
f'activities should be list, but got {type(activities)}') |
|
self.activities = [] |
|
for activity in activities: |
|
activity = activity.lower() |
|
if activity == 'cpu': |
|
self.activities.append(profiler.ProfilerActivity.CPU) |
|
elif activity == 'cuda': |
|
self.activities.append(profiler.ProfilerActivity.CUDA) |
|
else: |
|
raise ValueError( |
|
f'activity should be "cpu" or "cuda", but got {activity}') |
|
|
|
if schedule is not None: |
|
self.schedule = profiler.schedule(**schedule) |
|
else: |
|
self.schedule = None |
|
|
|
self.on_trace_ready = on_trace_ready |
|
self.record_shapes = record_shapes |
|
self.profile_memory = profile_memory |
|
self.with_stack = with_stack |
|
self.with_flops = with_flops |
|
self.json_trace_path = json_trace_path |
|
|
|
@master_only |
|
def before_run(self, runner): |
|
if self.by_epoch and runner.max_epochs < self.profile_iters: |
|
raise ValueError('self.profile_iters should not be greater than ' |
|
f'{runner.max_epochs}') |
|
|
|
if not self.by_epoch and runner.max_iters < self.profile_iters: |
|
raise ValueError('self.profile_iters should not be greater than ' |
|
f'{runner.max_iters}') |
|
|
|
if callable(self.on_trace_ready): |
|
_on_trace_ready = self.on_trace_ready |
|
elif isinstance(self.on_trace_ready, dict): |
|
trace_cfg = self.on_trace_ready.copy() |
|
trace_type = trace_cfg.pop('type') |
|
if trace_type == 'log_trace': |
|
|
|
def _log_handler(prof): |
|
print(prof.key_averages().table(**trace_cfg)) |
|
|
|
_on_trace_ready = _log_handler |
|
elif trace_type == 'tb_trace': |
|
try: |
|
import torch_tb_profiler |
|
except ImportError: |
|
raise ImportError('please run "pip install ' |
|
'torch-tb-profiler" to install ' |
|
'torch_tb_profiler') |
|
_on_trace_ready = torch.profiler.tensorboard_trace_handler( |
|
**trace_cfg) |
|
else: |
|
raise ValueError('trace_type should be "log_trace" or ' |
|
f'"tb_trace", but got {trace_type}') |
|
elif self.on_trace_ready is None: |
|
_on_trace_ready = None |
|
else: |
|
raise ValueError('on_trace_ready should be handler, dict or None, ' |
|
f'but got {type(self.on_trace_ready)}') |
|
|
|
if runner.max_epochs > 1: |
|
warnings.warn(f'profiler will profile {runner.max_epochs} epochs ' |
|
'instead of 1 epoch. Since profiler will slow down ' |
|
'the training, it is recommended to train 1 epoch ' |
|
'with ProfilerHook and adjust your setting according' |
|
' to the profiler summary. During normal training ' |
|
'(epoch > 1), you may disable the ProfilerHook.') |
|
|
|
self.profiler = torch.profiler.profile( |
|
activities=self.activities, |
|
schedule=self.schedule, |
|
on_trace_ready=_on_trace_ready, |
|
record_shapes=self.record_shapes, |
|
profile_memory=self.profile_memory, |
|
with_stack=self.with_stack, |
|
with_flops=self.with_flops) |
|
|
|
self.profiler.__enter__() |
|
runner.logger.info('profiler is profiling...') |
|
|
|
@master_only |
|
def after_train_epoch(self, runner): |
|
if self.by_epoch and runner.epoch == self.profile_iters - 1: |
|
runner.logger.info('profiler may take a few minutes...') |
|
self.profiler.__exit__(None, None, None) |
|
if self.json_trace_path is not None: |
|
self.profiler.export_chrome_trace(self.json_trace_path) |
|
|
|
@master_only |
|
def after_train_iter(self, runner): |
|
self.profiler.step() |
|
if not self.by_epoch and runner.iter == self.profile_iters - 1: |
|
runner.logger.info('profiler may take a few minutes...') |
|
self.profiler.__exit__(None, None, None) |
|
if self.json_trace_path is not None: |
|
self.profiler.export_chrome_trace(self.json_trace_path) |
|
|