atatakun's picture
Duplicate from atatakun/testapp2
18dd6ad
raw
history blame
26 kB
# Copyright (c) OpenMMLab. All rights reserved.
import numbers
from math import cos, pi
import annotator.mmpkg.mmcv as mmcv
from .hook import HOOKS, Hook
class LrUpdaterHook(Hook):
"""LR Scheduler in MMCV.
Args:
by_epoch (bool): LR changes epoch by epoch
warmup (string): Type of warmup used. It can be None(use no warmup),
'constant', 'linear' or 'exp'
warmup_iters (int): The number of iterations or epochs that warmup
lasts
warmup_ratio (float): LR used at the beginning of warmup equals to
warmup_ratio * initial_lr
warmup_by_epoch (bool): When warmup_by_epoch == True, warmup_iters
means the number of epochs that warmup lasts, otherwise means the
number of iteration that warmup lasts
"""
def __init__(self,
by_epoch=True,
warmup=None,
warmup_iters=0,
warmup_ratio=0.1,
warmup_by_epoch=False):
# validate the "warmup" argument
if warmup is not None:
if warmup not in ['constant', 'linear', 'exp']:
raise ValueError(
f'"{warmup}" is not a supported type for warming up, valid'
' types are "constant" and "linear"')
if warmup is not None:
assert warmup_iters > 0, \
'"warmup_iters" must be a positive integer'
assert 0 < warmup_ratio <= 1.0, \
'"warmup_ratio" must be in range (0,1]'
self.by_epoch = by_epoch
self.warmup = warmup
self.warmup_iters = warmup_iters
self.warmup_ratio = warmup_ratio
self.warmup_by_epoch = warmup_by_epoch
if self.warmup_by_epoch:
self.warmup_epochs = self.warmup_iters
self.warmup_iters = None
else:
self.warmup_epochs = None
self.base_lr = [] # initial lr for all param groups
self.regular_lr = [] # expected lr if no warming up is performed
def _set_lr(self, runner, lr_groups):
if isinstance(runner.optimizer, dict):
for k, optim in runner.optimizer.items():
for param_group, lr in zip(optim.param_groups, lr_groups[k]):
param_group['lr'] = lr
else:
for param_group, lr in zip(runner.optimizer.param_groups,
lr_groups):
param_group['lr'] = lr
def get_lr(self, runner, base_lr):
raise NotImplementedError
def get_regular_lr(self, runner):
if isinstance(runner.optimizer, dict):
lr_groups = {}
for k in runner.optimizer.keys():
_lr_group = [
self.get_lr(runner, _base_lr)
for _base_lr in self.base_lr[k]
]
lr_groups.update({k: _lr_group})
return lr_groups
else:
return [self.get_lr(runner, _base_lr) for _base_lr in self.base_lr]
def get_warmup_lr(self, cur_iters):
def _get_warmup_lr(cur_iters, regular_lr):
if self.warmup == 'constant':
warmup_lr = [_lr * self.warmup_ratio for _lr in regular_lr]
elif self.warmup == 'linear':
k = (1 - cur_iters / self.warmup_iters) * (1 -
self.warmup_ratio)
warmup_lr = [_lr * (1 - k) for _lr in regular_lr]
elif self.warmup == 'exp':
k = self.warmup_ratio**(1 - cur_iters / self.warmup_iters)
warmup_lr = [_lr * k for _lr in regular_lr]
return warmup_lr
if isinstance(self.regular_lr, dict):
lr_groups = {}
for key, regular_lr in self.regular_lr.items():
lr_groups[key] = _get_warmup_lr(cur_iters, regular_lr)
return lr_groups
else:
return _get_warmup_lr(cur_iters, self.regular_lr)
def before_run(self, runner):
# NOTE: when resuming from a checkpoint, if 'initial_lr' is not saved,
# it will be set according to the optimizer params
if isinstance(runner.optimizer, dict):
self.base_lr = {}
for k, optim in runner.optimizer.items():
for group in optim.param_groups:
group.setdefault('initial_lr', group['lr'])
_base_lr = [
group['initial_lr'] for group in optim.param_groups
]
self.base_lr.update({k: _base_lr})
else:
for group in runner.optimizer.param_groups:
group.setdefault('initial_lr', group['lr'])
self.base_lr = [
group['initial_lr'] for group in runner.optimizer.param_groups
]
def before_train_epoch(self, runner):
if self.warmup_iters is None:
epoch_len = len(runner.data_loader)
self.warmup_iters = self.warmup_epochs * epoch_len
if not self.by_epoch:
return
self.regular_lr = self.get_regular_lr(runner)
self._set_lr(runner, self.regular_lr)
def before_train_iter(self, runner):
cur_iter = runner.iter
if not self.by_epoch:
self.regular_lr = self.get_regular_lr(runner)
if self.warmup is None or cur_iter >= self.warmup_iters:
self._set_lr(runner, self.regular_lr)
else:
warmup_lr = self.get_warmup_lr(cur_iter)
self._set_lr(runner, warmup_lr)
elif self.by_epoch:
if self.warmup is None or cur_iter > self.warmup_iters:
return
elif cur_iter == self.warmup_iters:
self._set_lr(runner, self.regular_lr)
else:
warmup_lr = self.get_warmup_lr(cur_iter)
self._set_lr(runner, warmup_lr)
@HOOKS.register_module()
class FixedLrUpdaterHook(LrUpdaterHook):
def __init__(self, **kwargs):
super(FixedLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
return base_lr
@HOOKS.register_module()
class StepLrUpdaterHook(LrUpdaterHook):
"""Step LR scheduler with min_lr clipping.
Args:
step (int | list[int]): Step to decay the LR. If an int value is given,
regard it as the decay interval. If a list is given, decay LR at
these steps.
gamma (float, optional): Decay LR ratio. Default: 0.1.
min_lr (float, optional): Minimum LR value to keep. If LR after decay
is lower than `min_lr`, it will be clipped to this value. If None
is given, we don't perform lr clipping. Default: None.
"""
def __init__(self, step, gamma=0.1, min_lr=None, **kwargs):
if isinstance(step, list):
assert mmcv.is_list_of(step, int)
assert all([s > 0 for s in step])
elif isinstance(step, int):
assert step > 0
else:
raise TypeError('"step" must be a list or integer')
self.step = step
self.gamma = gamma
self.min_lr = min_lr
super(StepLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
progress = runner.epoch if self.by_epoch else runner.iter
# calculate exponential term
if isinstance(self.step, int):
exp = progress // self.step
else:
exp = len(self.step)
for i, s in enumerate(self.step):
if progress < s:
exp = i
break
lr = base_lr * (self.gamma**exp)
if self.min_lr is not None:
# clip to a minimum value
lr = max(lr, self.min_lr)
return lr
@HOOKS.register_module()
class ExpLrUpdaterHook(LrUpdaterHook):
def __init__(self, gamma, **kwargs):
self.gamma = gamma
super(ExpLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
progress = runner.epoch if self.by_epoch else runner.iter
return base_lr * self.gamma**progress
@HOOKS.register_module()
class PolyLrUpdaterHook(LrUpdaterHook):
def __init__(self, power=1., min_lr=0., **kwargs):
self.power = power
self.min_lr = min_lr
super(PolyLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
if self.by_epoch:
progress = runner.epoch
max_progress = runner.max_epochs
else:
progress = runner.iter
max_progress = runner.max_iters
coeff = (1 - progress / max_progress)**self.power
return (base_lr - self.min_lr) * coeff + self.min_lr
@HOOKS.register_module()
class InvLrUpdaterHook(LrUpdaterHook):
def __init__(self, gamma, power=1., **kwargs):
self.gamma = gamma
self.power = power
super(InvLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
progress = runner.epoch if self.by_epoch else runner.iter
return base_lr * (1 + self.gamma * progress)**(-self.power)
@HOOKS.register_module()
class CosineAnnealingLrUpdaterHook(LrUpdaterHook):
def __init__(self, min_lr=None, min_lr_ratio=None, **kwargs):
assert (min_lr is None) ^ (min_lr_ratio is None)
self.min_lr = min_lr
self.min_lr_ratio = min_lr_ratio
super(CosineAnnealingLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
if self.by_epoch:
progress = runner.epoch
max_progress = runner.max_epochs
else:
progress = runner.iter
max_progress = runner.max_iters
if self.min_lr_ratio is not None:
target_lr = base_lr * self.min_lr_ratio
else:
target_lr = self.min_lr
return annealing_cos(base_lr, target_lr, progress / max_progress)
@HOOKS.register_module()
class FlatCosineAnnealingLrUpdaterHook(LrUpdaterHook):
"""Flat + Cosine lr schedule.
Modified from https://github.com/fastai/fastai/blob/master/fastai/callback/schedule.py#L128 # noqa: E501
Args:
start_percent (float): When to start annealing the learning rate
after the percentage of the total training steps.
The value should be in range [0, 1).
Default: 0.75
min_lr (float, optional): The minimum lr. Default: None.
min_lr_ratio (float, optional): The ratio of minimum lr to the base lr.
Either `min_lr` or `min_lr_ratio` should be specified.
Default: None.
"""
def __init__(self,
start_percent=0.75,
min_lr=None,
min_lr_ratio=None,
**kwargs):
assert (min_lr is None) ^ (min_lr_ratio is None)
if start_percent < 0 or start_percent > 1 or not isinstance(
start_percent, float):
raise ValueError(
'expected float between 0 and 1 start_percent, but '
f'got {start_percent}')
self.start_percent = start_percent
self.min_lr = min_lr
self.min_lr_ratio = min_lr_ratio
super(FlatCosineAnnealingLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
if self.by_epoch:
start = round(runner.max_epochs * self.start_percent)
progress = runner.epoch - start
max_progress = runner.max_epochs - start
else:
start = round(runner.max_iters * self.start_percent)
progress = runner.iter - start
max_progress = runner.max_iters - start
if self.min_lr_ratio is not None:
target_lr = base_lr * self.min_lr_ratio
else:
target_lr = self.min_lr
if progress < 0:
return base_lr
else:
return annealing_cos(base_lr, target_lr, progress / max_progress)
@HOOKS.register_module()
class CosineRestartLrUpdaterHook(LrUpdaterHook):
"""Cosine annealing with restarts learning rate scheme.
Args:
periods (list[int]): Periods for each cosine anneling cycle.
restart_weights (list[float], optional): Restart weights at each
restart iteration. Default: [1].
min_lr (float, optional): The minimum lr. Default: None.
min_lr_ratio (float, optional): The ratio of minimum lr to the base lr.
Either `min_lr` or `min_lr_ratio` should be specified.
Default: None.
"""
def __init__(self,
periods,
restart_weights=[1],
min_lr=None,
min_lr_ratio=None,
**kwargs):
assert (min_lr is None) ^ (min_lr_ratio is None)
self.periods = periods
self.min_lr = min_lr
self.min_lr_ratio = min_lr_ratio
self.restart_weights = restart_weights
assert (len(self.periods) == len(self.restart_weights)
), 'periods and restart_weights should have the same length.'
super(CosineRestartLrUpdaterHook, self).__init__(**kwargs)
self.cumulative_periods = [
sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
]
def get_lr(self, runner, base_lr):
if self.by_epoch:
progress = runner.epoch
else:
progress = runner.iter
if self.min_lr_ratio is not None:
target_lr = base_lr * self.min_lr_ratio
else:
target_lr = self.min_lr
idx = get_position_from_periods(progress, self.cumulative_periods)
current_weight = self.restart_weights[idx]
nearest_restart = 0 if idx == 0 else self.cumulative_periods[idx - 1]
current_periods = self.periods[idx]
alpha = min((progress - nearest_restart) / current_periods, 1)
return annealing_cos(base_lr, target_lr, alpha, current_weight)
def get_position_from_periods(iteration, cumulative_periods):
"""Get the position from a period list.
It will return the index of the right-closest number in the period list.
For example, the cumulative_periods = [100, 200, 300, 400],
if iteration == 50, return 0;
if iteration == 210, return 2;
if iteration == 300, return 3.
Args:
iteration (int): Current iteration.
cumulative_periods (list[int]): Cumulative period list.
Returns:
int: The position of the right-closest number in the period list.
"""
for i, period in enumerate(cumulative_periods):
if iteration < period:
return i
raise ValueError(f'Current iteration {iteration} exceeds '
f'cumulative_periods {cumulative_periods}')
@HOOKS.register_module()
class CyclicLrUpdaterHook(LrUpdaterHook):
"""Cyclic LR Scheduler.
Implement the cyclical learning rate policy (CLR) described in
https://arxiv.org/pdf/1506.01186.pdf
Different from the original paper, we use cosine annealing rather than
triangular policy inside a cycle. This improves the performance in the
3D detection area.
Args:
by_epoch (bool): Whether to update LR by epoch.
target_ratio (tuple[float]): Relative ratio of the highest LR and the
lowest LR to the initial LR.
cyclic_times (int): Number of cycles during training
step_ratio_up (float): The ratio of the increasing process of LR in
the total cycle.
anneal_strategy (str): {'cos', 'linear'}
Specifies the annealing strategy: 'cos' for cosine annealing,
'linear' for linear annealing. Default: 'cos'.
"""
def __init__(self,
by_epoch=False,
target_ratio=(10, 1e-4),
cyclic_times=1,
step_ratio_up=0.4,
anneal_strategy='cos',
**kwargs):
if isinstance(target_ratio, float):
target_ratio = (target_ratio, target_ratio / 1e5)
elif isinstance(target_ratio, tuple):
target_ratio = (target_ratio[0], target_ratio[0] / 1e5) \
if len(target_ratio) == 1 else target_ratio
else:
raise ValueError('target_ratio should be either float '
f'or tuple, got {type(target_ratio)}')
assert len(target_ratio) == 2, \
'"target_ratio" must be list or tuple of two floats'
assert 0 <= step_ratio_up < 1.0, \
'"step_ratio_up" must be in range [0,1)'
self.target_ratio = target_ratio
self.cyclic_times = cyclic_times
self.step_ratio_up = step_ratio_up
self.lr_phases = [] # init lr_phases
# validate anneal_strategy
if anneal_strategy not in ['cos', 'linear']:
raise ValueError('anneal_strategy must be one of "cos" or '
f'"linear", instead got {anneal_strategy}')
elif anneal_strategy == 'cos':
self.anneal_func = annealing_cos
elif anneal_strategy == 'linear':
self.anneal_func = annealing_linear
assert not by_epoch, \
'currently only support "by_epoch" = False'
super(CyclicLrUpdaterHook, self).__init__(by_epoch, **kwargs)
def before_run(self, runner):
super(CyclicLrUpdaterHook, self).before_run(runner)
# initiate lr_phases
# total lr_phases are separated as up and down
max_iter_per_phase = runner.max_iters // self.cyclic_times
iter_up_phase = int(self.step_ratio_up * max_iter_per_phase)
self.lr_phases.append(
[0, iter_up_phase, max_iter_per_phase, 1, self.target_ratio[0]])
self.lr_phases.append([
iter_up_phase, max_iter_per_phase, max_iter_per_phase,
self.target_ratio[0], self.target_ratio[1]
])
def get_lr(self, runner, base_lr):
curr_iter = runner.iter
for (start_iter, end_iter, max_iter_per_phase, start_ratio,
end_ratio) in self.lr_phases:
curr_iter %= max_iter_per_phase
if start_iter <= curr_iter < end_iter:
progress = curr_iter - start_iter
return self.anneal_func(base_lr * start_ratio,
base_lr * end_ratio,
progress / (end_iter - start_iter))
@HOOKS.register_module()
class OneCycleLrUpdaterHook(LrUpdaterHook):
"""One Cycle LR Scheduler.
The 1cycle learning rate policy changes the learning rate after every
batch. The one cycle learning rate policy is described in
https://arxiv.org/pdf/1708.07120.pdf
Args:
max_lr (float or list): Upper learning rate boundaries in the cycle
for each parameter group.
total_steps (int, optional): The total number of steps in the cycle.
Note that if a value is not provided here, it will be the max_iter
of runner. Default: None.
pct_start (float): The percentage of the cycle (in number of steps)
spent increasing the learning rate.
Default: 0.3
anneal_strategy (str): {'cos', 'linear'}
Specifies the annealing strategy: 'cos' for cosine annealing,
'linear' for linear annealing.
Default: 'cos'
div_factor (float): Determines the initial learning rate via
initial_lr = max_lr/div_factor
Default: 25
final_div_factor (float): Determines the minimum learning rate via
min_lr = initial_lr/final_div_factor
Default: 1e4
three_phase (bool): If three_phase is True, use a third phase of the
schedule to annihilate the learning rate according to
final_div_factor instead of modifying the second phase (the first
two phases will be symmetrical about the step indicated by
pct_start).
Default: False
"""
def __init__(self,
max_lr,
total_steps=None,
pct_start=0.3,
anneal_strategy='cos',
div_factor=25,
final_div_factor=1e4,
three_phase=False,
**kwargs):
# validate by_epoch, currently only support by_epoch = False
if 'by_epoch' not in kwargs:
kwargs['by_epoch'] = False
else:
assert not kwargs['by_epoch'], \
'currently only support "by_epoch" = False'
if not isinstance(max_lr, (numbers.Number, list, dict)):
raise ValueError('the type of max_lr must be the one of list or '
f'dict, but got {type(max_lr)}')
self._max_lr = max_lr
if total_steps is not None:
if not isinstance(total_steps, int):
raise ValueError('the type of total_steps must be int, but'
f'got {type(total_steps)}')
self.total_steps = total_steps
# validate pct_start
if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float):
raise ValueError('expected float between 0 and 1 pct_start, but '
f'got {pct_start}')
self.pct_start = pct_start
# validate anneal_strategy
if anneal_strategy not in ['cos', 'linear']:
raise ValueError('anneal_strategy must be one of "cos" or '
f'"linear", instead got {anneal_strategy}')
elif anneal_strategy == 'cos':
self.anneal_func = annealing_cos
elif anneal_strategy == 'linear':
self.anneal_func = annealing_linear
self.div_factor = div_factor
self.final_div_factor = final_div_factor
self.three_phase = three_phase
self.lr_phases = [] # init lr_phases
super(OneCycleLrUpdaterHook, self).__init__(**kwargs)
def before_run(self, runner):
if hasattr(self, 'total_steps'):
total_steps = self.total_steps
else:
total_steps = runner.max_iters
if total_steps < runner.max_iters:
raise ValueError(
'The total steps must be greater than or equal to max '
f'iterations {runner.max_iters} of runner, but total steps '
f'is {total_steps}.')
if isinstance(runner.optimizer, dict):
self.base_lr = {}
for k, optim in runner.optimizer.items():
_max_lr = format_param(k, optim, self._max_lr)
self.base_lr[k] = [lr / self.div_factor for lr in _max_lr]
for group, lr in zip(optim.param_groups, self.base_lr[k]):
group.setdefault('initial_lr', lr)
else:
k = type(runner.optimizer).__name__
_max_lr = format_param(k, runner.optimizer, self._max_lr)
self.base_lr = [lr / self.div_factor for lr in _max_lr]
for group, lr in zip(runner.optimizer.param_groups, self.base_lr):
group.setdefault('initial_lr', lr)
if self.three_phase:
self.lr_phases.append(
[float(self.pct_start * total_steps) - 1, 1, self.div_factor])
self.lr_phases.append([
float(2 * self.pct_start * total_steps) - 2, self.div_factor, 1
])
self.lr_phases.append(
[total_steps - 1, 1, 1 / self.final_div_factor])
else:
self.lr_phases.append(
[float(self.pct_start * total_steps) - 1, 1, self.div_factor])
self.lr_phases.append(
[total_steps - 1, self.div_factor, 1 / self.final_div_factor])
def get_lr(self, runner, base_lr):
curr_iter = runner.iter
start_iter = 0
for i, (end_iter, start_lr, end_lr) in enumerate(self.lr_phases):
if curr_iter <= end_iter:
pct = (curr_iter - start_iter) / (end_iter - start_iter)
lr = self.anneal_func(base_lr * start_lr, base_lr * end_lr,
pct)
break
start_iter = end_iter
return lr
def annealing_cos(start, end, factor, weight=1):
"""Calculate annealing cos learning rate.
Cosine anneal from `weight * start + (1 - weight) * end` to `end` as
percentage goes from 0.0 to 1.0.
Args:
start (float): The starting learning rate of the cosine annealing.
end (float): The ending learing rate of the cosine annealing.
factor (float): The coefficient of `pi` when calculating the current
percentage. Range from 0.0 to 1.0.
weight (float, optional): The combination factor of `start` and `end`
when calculating the actual starting learning rate. Default to 1.
"""
cos_out = cos(pi * factor) + 1
return end + 0.5 * weight * (start - end) * cos_out
def annealing_linear(start, end, factor):
"""Calculate annealing linear learning rate.
Linear anneal from `start` to `end` as percentage goes from 0.0 to 1.0.
Args:
start (float): The starting learning rate of the linear annealing.
end (float): The ending learing rate of the linear annealing.
factor (float): The coefficient of `pi` when calculating the current
percentage. Range from 0.0 to 1.0.
"""
return start + (end - start) * factor
def format_param(name, optim, param):
if isinstance(param, numbers.Number):
return [param] * len(optim.param_groups)
elif isinstance(param, (list, tuple)): # multi param groups
if len(param) != len(optim.param_groups):
raise ValueError(f'expected {len(optim.param_groups)} '
f'values for {name}, got {len(param)}')
return param
else: # multi optimizers
if name not in param:
raise KeyError(f'{name} is not found in {param.keys()}')
return param[name]