|
|
|
import numbers |
|
from math import cos, pi |
|
|
|
import annotator.mmpkg.mmcv as mmcv |
|
from .hook import HOOKS, Hook |
|
|
|
|
|
class LrUpdaterHook(Hook): |
|
"""LR Scheduler in MMCV. |
|
|
|
Args: |
|
by_epoch (bool): LR changes epoch by epoch |
|
warmup (string): Type of warmup used. It can be None(use no warmup), |
|
'constant', 'linear' or 'exp' |
|
warmup_iters (int): The number of iterations or epochs that warmup |
|
lasts |
|
warmup_ratio (float): LR used at the beginning of warmup equals to |
|
warmup_ratio * initial_lr |
|
warmup_by_epoch (bool): When warmup_by_epoch == True, warmup_iters |
|
means the number of epochs that warmup lasts, otherwise means the |
|
number of iteration that warmup lasts |
|
""" |
|
|
|
def __init__(self, |
|
by_epoch=True, |
|
warmup=None, |
|
warmup_iters=0, |
|
warmup_ratio=0.1, |
|
warmup_by_epoch=False): |
|
|
|
if warmup is not None: |
|
if warmup not in ['constant', 'linear', 'exp']: |
|
raise ValueError( |
|
f'"{warmup}" is not a supported type for warming up, valid' |
|
' types are "constant" and "linear"') |
|
if warmup is not None: |
|
assert warmup_iters > 0, \ |
|
'"warmup_iters" must be a positive integer' |
|
assert 0 < warmup_ratio <= 1.0, \ |
|
'"warmup_ratio" must be in range (0,1]' |
|
|
|
self.by_epoch = by_epoch |
|
self.warmup = warmup |
|
self.warmup_iters = warmup_iters |
|
self.warmup_ratio = warmup_ratio |
|
self.warmup_by_epoch = warmup_by_epoch |
|
|
|
if self.warmup_by_epoch: |
|
self.warmup_epochs = self.warmup_iters |
|
self.warmup_iters = None |
|
else: |
|
self.warmup_epochs = None |
|
|
|
self.base_lr = [] |
|
self.regular_lr = [] |
|
|
|
def _set_lr(self, runner, lr_groups): |
|
if isinstance(runner.optimizer, dict): |
|
for k, optim in runner.optimizer.items(): |
|
for param_group, lr in zip(optim.param_groups, lr_groups[k]): |
|
param_group['lr'] = lr |
|
else: |
|
for param_group, lr in zip(runner.optimizer.param_groups, |
|
lr_groups): |
|
param_group['lr'] = lr |
|
|
|
def get_lr(self, runner, base_lr): |
|
raise NotImplementedError |
|
|
|
def get_regular_lr(self, runner): |
|
if isinstance(runner.optimizer, dict): |
|
lr_groups = {} |
|
for k in runner.optimizer.keys(): |
|
_lr_group = [ |
|
self.get_lr(runner, _base_lr) |
|
for _base_lr in self.base_lr[k] |
|
] |
|
lr_groups.update({k: _lr_group}) |
|
|
|
return lr_groups |
|
else: |
|
return [self.get_lr(runner, _base_lr) for _base_lr in self.base_lr] |
|
|
|
def get_warmup_lr(self, cur_iters): |
|
|
|
def _get_warmup_lr(cur_iters, regular_lr): |
|
if self.warmup == 'constant': |
|
warmup_lr = [_lr * self.warmup_ratio for _lr in regular_lr] |
|
elif self.warmup == 'linear': |
|
k = (1 - cur_iters / self.warmup_iters) * (1 - |
|
self.warmup_ratio) |
|
warmup_lr = [_lr * (1 - k) for _lr in regular_lr] |
|
elif self.warmup == 'exp': |
|
k = self.warmup_ratio**(1 - cur_iters / self.warmup_iters) |
|
warmup_lr = [_lr * k for _lr in regular_lr] |
|
return warmup_lr |
|
|
|
if isinstance(self.regular_lr, dict): |
|
lr_groups = {} |
|
for key, regular_lr in self.regular_lr.items(): |
|
lr_groups[key] = _get_warmup_lr(cur_iters, regular_lr) |
|
return lr_groups |
|
else: |
|
return _get_warmup_lr(cur_iters, self.regular_lr) |
|
|
|
def before_run(self, runner): |
|
|
|
|
|
if isinstance(runner.optimizer, dict): |
|
self.base_lr = {} |
|
for k, optim in runner.optimizer.items(): |
|
for group in optim.param_groups: |
|
group.setdefault('initial_lr', group['lr']) |
|
_base_lr = [ |
|
group['initial_lr'] for group in optim.param_groups |
|
] |
|
self.base_lr.update({k: _base_lr}) |
|
else: |
|
for group in runner.optimizer.param_groups: |
|
group.setdefault('initial_lr', group['lr']) |
|
self.base_lr = [ |
|
group['initial_lr'] for group in runner.optimizer.param_groups |
|
] |
|
|
|
def before_train_epoch(self, runner): |
|
if self.warmup_iters is None: |
|
epoch_len = len(runner.data_loader) |
|
self.warmup_iters = self.warmup_epochs * epoch_len |
|
|
|
if not self.by_epoch: |
|
return |
|
|
|
self.regular_lr = self.get_regular_lr(runner) |
|
self._set_lr(runner, self.regular_lr) |
|
|
|
def before_train_iter(self, runner): |
|
cur_iter = runner.iter |
|
if not self.by_epoch: |
|
self.regular_lr = self.get_regular_lr(runner) |
|
if self.warmup is None or cur_iter >= self.warmup_iters: |
|
self._set_lr(runner, self.regular_lr) |
|
else: |
|
warmup_lr = self.get_warmup_lr(cur_iter) |
|
self._set_lr(runner, warmup_lr) |
|
elif self.by_epoch: |
|
if self.warmup is None or cur_iter > self.warmup_iters: |
|
return |
|
elif cur_iter == self.warmup_iters: |
|
self._set_lr(runner, self.regular_lr) |
|
else: |
|
warmup_lr = self.get_warmup_lr(cur_iter) |
|
self._set_lr(runner, warmup_lr) |
|
|
|
|
|
@HOOKS.register_module() |
|
class FixedLrUpdaterHook(LrUpdaterHook): |
|
|
|
def __init__(self, **kwargs): |
|
super(FixedLrUpdaterHook, self).__init__(**kwargs) |
|
|
|
def get_lr(self, runner, base_lr): |
|
return base_lr |
|
|
|
|
|
@HOOKS.register_module() |
|
class StepLrUpdaterHook(LrUpdaterHook): |
|
"""Step LR scheduler with min_lr clipping. |
|
|
|
Args: |
|
step (int | list[int]): Step to decay the LR. If an int value is given, |
|
regard it as the decay interval. If a list is given, decay LR at |
|
these steps. |
|
gamma (float, optional): Decay LR ratio. Default: 0.1. |
|
min_lr (float, optional): Minimum LR value to keep. If LR after decay |
|
is lower than `min_lr`, it will be clipped to this value. If None |
|
is given, we don't perform lr clipping. Default: None. |
|
""" |
|
|
|
def __init__(self, step, gamma=0.1, min_lr=None, **kwargs): |
|
if isinstance(step, list): |
|
assert mmcv.is_list_of(step, int) |
|
assert all([s > 0 for s in step]) |
|
elif isinstance(step, int): |
|
assert step > 0 |
|
else: |
|
raise TypeError('"step" must be a list or integer') |
|
self.step = step |
|
self.gamma = gamma |
|
self.min_lr = min_lr |
|
super(StepLrUpdaterHook, self).__init__(**kwargs) |
|
|
|
def get_lr(self, runner, base_lr): |
|
progress = runner.epoch if self.by_epoch else runner.iter |
|
|
|
|
|
if isinstance(self.step, int): |
|
exp = progress // self.step |
|
else: |
|
exp = len(self.step) |
|
for i, s in enumerate(self.step): |
|
if progress < s: |
|
exp = i |
|
break |
|
|
|
lr = base_lr * (self.gamma**exp) |
|
if self.min_lr is not None: |
|
|
|
lr = max(lr, self.min_lr) |
|
return lr |
|
|
|
|
|
@HOOKS.register_module() |
|
class ExpLrUpdaterHook(LrUpdaterHook): |
|
|
|
def __init__(self, gamma, **kwargs): |
|
self.gamma = gamma |
|
super(ExpLrUpdaterHook, self).__init__(**kwargs) |
|
|
|
def get_lr(self, runner, base_lr): |
|
progress = runner.epoch if self.by_epoch else runner.iter |
|
return base_lr * self.gamma**progress |
|
|
|
|
|
@HOOKS.register_module() |
|
class PolyLrUpdaterHook(LrUpdaterHook): |
|
|
|
def __init__(self, power=1., min_lr=0., **kwargs): |
|
self.power = power |
|
self.min_lr = min_lr |
|
super(PolyLrUpdaterHook, self).__init__(**kwargs) |
|
|
|
def get_lr(self, runner, base_lr): |
|
if self.by_epoch: |
|
progress = runner.epoch |
|
max_progress = runner.max_epochs |
|
else: |
|
progress = runner.iter |
|
max_progress = runner.max_iters |
|
coeff = (1 - progress / max_progress)**self.power |
|
return (base_lr - self.min_lr) * coeff + self.min_lr |
|
|
|
|
|
@HOOKS.register_module() |
|
class InvLrUpdaterHook(LrUpdaterHook): |
|
|
|
def __init__(self, gamma, power=1., **kwargs): |
|
self.gamma = gamma |
|
self.power = power |
|
super(InvLrUpdaterHook, self).__init__(**kwargs) |
|
|
|
def get_lr(self, runner, base_lr): |
|
progress = runner.epoch if self.by_epoch else runner.iter |
|
return base_lr * (1 + self.gamma * progress)**(-self.power) |
|
|
|
|
|
@HOOKS.register_module() |
|
class CosineAnnealingLrUpdaterHook(LrUpdaterHook): |
|
|
|
def __init__(self, min_lr=None, min_lr_ratio=None, **kwargs): |
|
assert (min_lr is None) ^ (min_lr_ratio is None) |
|
self.min_lr = min_lr |
|
self.min_lr_ratio = min_lr_ratio |
|
super(CosineAnnealingLrUpdaterHook, self).__init__(**kwargs) |
|
|
|
def get_lr(self, runner, base_lr): |
|
if self.by_epoch: |
|
progress = runner.epoch |
|
max_progress = runner.max_epochs |
|
else: |
|
progress = runner.iter |
|
max_progress = runner.max_iters |
|
|
|
if self.min_lr_ratio is not None: |
|
target_lr = base_lr * self.min_lr_ratio |
|
else: |
|
target_lr = self.min_lr |
|
return annealing_cos(base_lr, target_lr, progress / max_progress) |
|
|
|
|
|
@HOOKS.register_module() |
|
class FlatCosineAnnealingLrUpdaterHook(LrUpdaterHook): |
|
"""Flat + Cosine lr schedule. |
|
|
|
Modified from https://github.com/fastai/fastai/blob/master/fastai/callback/schedule.py#L128 # noqa: E501 |
|
|
|
Args: |
|
start_percent (float): When to start annealing the learning rate |
|
after the percentage of the total training steps. |
|
The value should be in range [0, 1). |
|
Default: 0.75 |
|
min_lr (float, optional): The minimum lr. Default: None. |
|
min_lr_ratio (float, optional): The ratio of minimum lr to the base lr. |
|
Either `min_lr` or `min_lr_ratio` should be specified. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
start_percent=0.75, |
|
min_lr=None, |
|
min_lr_ratio=None, |
|
**kwargs): |
|
assert (min_lr is None) ^ (min_lr_ratio is None) |
|
if start_percent < 0 or start_percent > 1 or not isinstance( |
|
start_percent, float): |
|
raise ValueError( |
|
'expected float between 0 and 1 start_percent, but ' |
|
f'got {start_percent}') |
|
self.start_percent = start_percent |
|
self.min_lr = min_lr |
|
self.min_lr_ratio = min_lr_ratio |
|
super(FlatCosineAnnealingLrUpdaterHook, self).__init__(**kwargs) |
|
|
|
def get_lr(self, runner, base_lr): |
|
if self.by_epoch: |
|
start = round(runner.max_epochs * self.start_percent) |
|
progress = runner.epoch - start |
|
max_progress = runner.max_epochs - start |
|
else: |
|
start = round(runner.max_iters * self.start_percent) |
|
progress = runner.iter - start |
|
max_progress = runner.max_iters - start |
|
|
|
if self.min_lr_ratio is not None: |
|
target_lr = base_lr * self.min_lr_ratio |
|
else: |
|
target_lr = self.min_lr |
|
|
|
if progress < 0: |
|
return base_lr |
|
else: |
|
return annealing_cos(base_lr, target_lr, progress / max_progress) |
|
|
|
|
|
@HOOKS.register_module() |
|
class CosineRestartLrUpdaterHook(LrUpdaterHook): |
|
"""Cosine annealing with restarts learning rate scheme. |
|
|
|
Args: |
|
periods (list[int]): Periods for each cosine anneling cycle. |
|
restart_weights (list[float], optional): Restart weights at each |
|
restart iteration. Default: [1]. |
|
min_lr (float, optional): The minimum lr. Default: None. |
|
min_lr_ratio (float, optional): The ratio of minimum lr to the base lr. |
|
Either `min_lr` or `min_lr_ratio` should be specified. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
periods, |
|
restart_weights=[1], |
|
min_lr=None, |
|
min_lr_ratio=None, |
|
**kwargs): |
|
assert (min_lr is None) ^ (min_lr_ratio is None) |
|
self.periods = periods |
|
self.min_lr = min_lr |
|
self.min_lr_ratio = min_lr_ratio |
|
self.restart_weights = restart_weights |
|
assert (len(self.periods) == len(self.restart_weights) |
|
), 'periods and restart_weights should have the same length.' |
|
super(CosineRestartLrUpdaterHook, self).__init__(**kwargs) |
|
|
|
self.cumulative_periods = [ |
|
sum(self.periods[0:i + 1]) for i in range(0, len(self.periods)) |
|
] |
|
|
|
def get_lr(self, runner, base_lr): |
|
if self.by_epoch: |
|
progress = runner.epoch |
|
else: |
|
progress = runner.iter |
|
|
|
if self.min_lr_ratio is not None: |
|
target_lr = base_lr * self.min_lr_ratio |
|
else: |
|
target_lr = self.min_lr |
|
|
|
idx = get_position_from_periods(progress, self.cumulative_periods) |
|
current_weight = self.restart_weights[idx] |
|
nearest_restart = 0 if idx == 0 else self.cumulative_periods[idx - 1] |
|
current_periods = self.periods[idx] |
|
|
|
alpha = min((progress - nearest_restart) / current_periods, 1) |
|
return annealing_cos(base_lr, target_lr, alpha, current_weight) |
|
|
|
|
|
def get_position_from_periods(iteration, cumulative_periods): |
|
"""Get the position from a period list. |
|
|
|
It will return the index of the right-closest number in the period list. |
|
For example, the cumulative_periods = [100, 200, 300, 400], |
|
if iteration == 50, return 0; |
|
if iteration == 210, return 2; |
|
if iteration == 300, return 3. |
|
|
|
Args: |
|
iteration (int): Current iteration. |
|
cumulative_periods (list[int]): Cumulative period list. |
|
|
|
Returns: |
|
int: The position of the right-closest number in the period list. |
|
""" |
|
for i, period in enumerate(cumulative_periods): |
|
if iteration < period: |
|
return i |
|
raise ValueError(f'Current iteration {iteration} exceeds ' |
|
f'cumulative_periods {cumulative_periods}') |
|
|
|
|
|
@HOOKS.register_module() |
|
class CyclicLrUpdaterHook(LrUpdaterHook): |
|
"""Cyclic LR Scheduler. |
|
|
|
Implement the cyclical learning rate policy (CLR) described in |
|
https://arxiv.org/pdf/1506.01186.pdf |
|
|
|
Different from the original paper, we use cosine annealing rather than |
|
triangular policy inside a cycle. This improves the performance in the |
|
3D detection area. |
|
|
|
Args: |
|
by_epoch (bool): Whether to update LR by epoch. |
|
target_ratio (tuple[float]): Relative ratio of the highest LR and the |
|
lowest LR to the initial LR. |
|
cyclic_times (int): Number of cycles during training |
|
step_ratio_up (float): The ratio of the increasing process of LR in |
|
the total cycle. |
|
anneal_strategy (str): {'cos', 'linear'} |
|
Specifies the annealing strategy: 'cos' for cosine annealing, |
|
'linear' for linear annealing. Default: 'cos'. |
|
""" |
|
|
|
def __init__(self, |
|
by_epoch=False, |
|
target_ratio=(10, 1e-4), |
|
cyclic_times=1, |
|
step_ratio_up=0.4, |
|
anneal_strategy='cos', |
|
**kwargs): |
|
if isinstance(target_ratio, float): |
|
target_ratio = (target_ratio, target_ratio / 1e5) |
|
elif isinstance(target_ratio, tuple): |
|
target_ratio = (target_ratio[0], target_ratio[0] / 1e5) \ |
|
if len(target_ratio) == 1 else target_ratio |
|
else: |
|
raise ValueError('target_ratio should be either float ' |
|
f'or tuple, got {type(target_ratio)}') |
|
|
|
assert len(target_ratio) == 2, \ |
|
'"target_ratio" must be list or tuple of two floats' |
|
assert 0 <= step_ratio_up < 1.0, \ |
|
'"step_ratio_up" must be in range [0,1)' |
|
|
|
self.target_ratio = target_ratio |
|
self.cyclic_times = cyclic_times |
|
self.step_ratio_up = step_ratio_up |
|
self.lr_phases = [] |
|
|
|
if anneal_strategy not in ['cos', 'linear']: |
|
raise ValueError('anneal_strategy must be one of "cos" or ' |
|
f'"linear", instead got {anneal_strategy}') |
|
elif anneal_strategy == 'cos': |
|
self.anneal_func = annealing_cos |
|
elif anneal_strategy == 'linear': |
|
self.anneal_func = annealing_linear |
|
|
|
assert not by_epoch, \ |
|
'currently only support "by_epoch" = False' |
|
super(CyclicLrUpdaterHook, self).__init__(by_epoch, **kwargs) |
|
|
|
def before_run(self, runner): |
|
super(CyclicLrUpdaterHook, self).before_run(runner) |
|
|
|
|
|
max_iter_per_phase = runner.max_iters // self.cyclic_times |
|
iter_up_phase = int(self.step_ratio_up * max_iter_per_phase) |
|
self.lr_phases.append( |
|
[0, iter_up_phase, max_iter_per_phase, 1, self.target_ratio[0]]) |
|
self.lr_phases.append([ |
|
iter_up_phase, max_iter_per_phase, max_iter_per_phase, |
|
self.target_ratio[0], self.target_ratio[1] |
|
]) |
|
|
|
def get_lr(self, runner, base_lr): |
|
curr_iter = runner.iter |
|
for (start_iter, end_iter, max_iter_per_phase, start_ratio, |
|
end_ratio) in self.lr_phases: |
|
curr_iter %= max_iter_per_phase |
|
if start_iter <= curr_iter < end_iter: |
|
progress = curr_iter - start_iter |
|
return self.anneal_func(base_lr * start_ratio, |
|
base_lr * end_ratio, |
|
progress / (end_iter - start_iter)) |
|
|
|
|
|
@HOOKS.register_module() |
|
class OneCycleLrUpdaterHook(LrUpdaterHook): |
|
"""One Cycle LR Scheduler. |
|
|
|
The 1cycle learning rate policy changes the learning rate after every |
|
batch. The one cycle learning rate policy is described in |
|
https://arxiv.org/pdf/1708.07120.pdf |
|
|
|
Args: |
|
max_lr (float or list): Upper learning rate boundaries in the cycle |
|
for each parameter group. |
|
total_steps (int, optional): The total number of steps in the cycle. |
|
Note that if a value is not provided here, it will be the max_iter |
|
of runner. Default: None. |
|
pct_start (float): The percentage of the cycle (in number of steps) |
|
spent increasing the learning rate. |
|
Default: 0.3 |
|
anneal_strategy (str): {'cos', 'linear'} |
|
Specifies the annealing strategy: 'cos' for cosine annealing, |
|
'linear' for linear annealing. |
|
Default: 'cos' |
|
div_factor (float): Determines the initial learning rate via |
|
initial_lr = max_lr/div_factor |
|
Default: 25 |
|
final_div_factor (float): Determines the minimum learning rate via |
|
min_lr = initial_lr/final_div_factor |
|
Default: 1e4 |
|
three_phase (bool): If three_phase is True, use a third phase of the |
|
schedule to annihilate the learning rate according to |
|
final_div_factor instead of modifying the second phase (the first |
|
two phases will be symmetrical about the step indicated by |
|
pct_start). |
|
Default: False |
|
""" |
|
|
|
def __init__(self, |
|
max_lr, |
|
total_steps=None, |
|
pct_start=0.3, |
|
anneal_strategy='cos', |
|
div_factor=25, |
|
final_div_factor=1e4, |
|
three_phase=False, |
|
**kwargs): |
|
|
|
if 'by_epoch' not in kwargs: |
|
kwargs['by_epoch'] = False |
|
else: |
|
assert not kwargs['by_epoch'], \ |
|
'currently only support "by_epoch" = False' |
|
if not isinstance(max_lr, (numbers.Number, list, dict)): |
|
raise ValueError('the type of max_lr must be the one of list or ' |
|
f'dict, but got {type(max_lr)}') |
|
self._max_lr = max_lr |
|
if total_steps is not None: |
|
if not isinstance(total_steps, int): |
|
raise ValueError('the type of total_steps must be int, but' |
|
f'got {type(total_steps)}') |
|
self.total_steps = total_steps |
|
|
|
if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float): |
|
raise ValueError('expected float between 0 and 1 pct_start, but ' |
|
f'got {pct_start}') |
|
self.pct_start = pct_start |
|
|
|
if anneal_strategy not in ['cos', 'linear']: |
|
raise ValueError('anneal_strategy must be one of "cos" or ' |
|
f'"linear", instead got {anneal_strategy}') |
|
elif anneal_strategy == 'cos': |
|
self.anneal_func = annealing_cos |
|
elif anneal_strategy == 'linear': |
|
self.anneal_func = annealing_linear |
|
self.div_factor = div_factor |
|
self.final_div_factor = final_div_factor |
|
self.three_phase = three_phase |
|
self.lr_phases = [] |
|
super(OneCycleLrUpdaterHook, self).__init__(**kwargs) |
|
|
|
def before_run(self, runner): |
|
if hasattr(self, 'total_steps'): |
|
total_steps = self.total_steps |
|
else: |
|
total_steps = runner.max_iters |
|
if total_steps < runner.max_iters: |
|
raise ValueError( |
|
'The total steps must be greater than or equal to max ' |
|
f'iterations {runner.max_iters} of runner, but total steps ' |
|
f'is {total_steps}.') |
|
|
|
if isinstance(runner.optimizer, dict): |
|
self.base_lr = {} |
|
for k, optim in runner.optimizer.items(): |
|
_max_lr = format_param(k, optim, self._max_lr) |
|
self.base_lr[k] = [lr / self.div_factor for lr in _max_lr] |
|
for group, lr in zip(optim.param_groups, self.base_lr[k]): |
|
group.setdefault('initial_lr', lr) |
|
else: |
|
k = type(runner.optimizer).__name__ |
|
_max_lr = format_param(k, runner.optimizer, self._max_lr) |
|
self.base_lr = [lr / self.div_factor for lr in _max_lr] |
|
for group, lr in zip(runner.optimizer.param_groups, self.base_lr): |
|
group.setdefault('initial_lr', lr) |
|
|
|
if self.three_phase: |
|
self.lr_phases.append( |
|
[float(self.pct_start * total_steps) - 1, 1, self.div_factor]) |
|
self.lr_phases.append([ |
|
float(2 * self.pct_start * total_steps) - 2, self.div_factor, 1 |
|
]) |
|
self.lr_phases.append( |
|
[total_steps - 1, 1, 1 / self.final_div_factor]) |
|
else: |
|
self.lr_phases.append( |
|
[float(self.pct_start * total_steps) - 1, 1, self.div_factor]) |
|
self.lr_phases.append( |
|
[total_steps - 1, self.div_factor, 1 / self.final_div_factor]) |
|
|
|
def get_lr(self, runner, base_lr): |
|
curr_iter = runner.iter |
|
start_iter = 0 |
|
for i, (end_iter, start_lr, end_lr) in enumerate(self.lr_phases): |
|
if curr_iter <= end_iter: |
|
pct = (curr_iter - start_iter) / (end_iter - start_iter) |
|
lr = self.anneal_func(base_lr * start_lr, base_lr * end_lr, |
|
pct) |
|
break |
|
start_iter = end_iter |
|
return lr |
|
|
|
|
|
def annealing_cos(start, end, factor, weight=1): |
|
"""Calculate annealing cos learning rate. |
|
|
|
Cosine anneal from `weight * start + (1 - weight) * end` to `end` as |
|
percentage goes from 0.0 to 1.0. |
|
|
|
Args: |
|
start (float): The starting learning rate of the cosine annealing. |
|
end (float): The ending learing rate of the cosine annealing. |
|
factor (float): The coefficient of `pi` when calculating the current |
|
percentage. Range from 0.0 to 1.0. |
|
weight (float, optional): The combination factor of `start` and `end` |
|
when calculating the actual starting learning rate. Default to 1. |
|
""" |
|
cos_out = cos(pi * factor) + 1 |
|
return end + 0.5 * weight * (start - end) * cos_out |
|
|
|
|
|
def annealing_linear(start, end, factor): |
|
"""Calculate annealing linear learning rate. |
|
|
|
Linear anneal from `start` to `end` as percentage goes from 0.0 to 1.0. |
|
|
|
Args: |
|
start (float): The starting learning rate of the linear annealing. |
|
end (float): The ending learing rate of the linear annealing. |
|
factor (float): The coefficient of `pi` when calculating the current |
|
percentage. Range from 0.0 to 1.0. |
|
""" |
|
return start + (end - start) * factor |
|
|
|
|
|
def format_param(name, optim, param): |
|
if isinstance(param, numbers.Number): |
|
return [param] * len(optim.param_groups) |
|
elif isinstance(param, (list, tuple)): |
|
if len(param) != len(optim.param_groups): |
|
raise ValueError(f'expected {len(optim.param_groups)} ' |
|
f'values for {name}, got {len(param)}') |
|
return param |
|
else: |
|
if name not in param: |
|
raise KeyError(f'{name} is not found in {param.keys()}') |
|
return param[name] |
|
|