|
|
|
import os.path as osp |
|
import platform |
|
import shutil |
|
import time |
|
import warnings |
|
|
|
import torch |
|
|
|
import annotator.mmpkg.mmcv as mmcv |
|
from .base_runner import BaseRunner |
|
from .builder import RUNNERS |
|
from .checkpoint import save_checkpoint |
|
from .utils import get_host_info |
|
|
|
|
|
@RUNNERS.register_module() |
|
class EpochBasedRunner(BaseRunner): |
|
"""Epoch-based Runner. |
|
|
|
This runner train models epoch by epoch. |
|
""" |
|
|
|
def run_iter(self, data_batch, train_mode, **kwargs): |
|
if self.batch_processor is not None: |
|
outputs = self.batch_processor( |
|
self.model, data_batch, train_mode=train_mode, **kwargs) |
|
elif train_mode: |
|
outputs = self.model.train_step(data_batch, self.optimizer, |
|
**kwargs) |
|
else: |
|
outputs = self.model.val_step(data_batch, self.optimizer, **kwargs) |
|
if not isinstance(outputs, dict): |
|
raise TypeError('"batch_processor()" or "model.train_step()"' |
|
'and "model.val_step()" must return a dict') |
|
if 'log_vars' in outputs: |
|
self.log_buffer.update(outputs['log_vars'], outputs['num_samples']) |
|
self.outputs = outputs |
|
|
|
def train(self, data_loader, **kwargs): |
|
self.model.train() |
|
self.mode = 'train' |
|
self.data_loader = data_loader |
|
self._max_iters = self._max_epochs * len(self.data_loader) |
|
self.call_hook('before_train_epoch') |
|
time.sleep(2) |
|
for i, data_batch in enumerate(self.data_loader): |
|
self._inner_iter = i |
|
self.call_hook('before_train_iter') |
|
self.run_iter(data_batch, train_mode=True, **kwargs) |
|
self.call_hook('after_train_iter') |
|
self._iter += 1 |
|
|
|
self.call_hook('after_train_epoch') |
|
self._epoch += 1 |
|
|
|
@torch.no_grad() |
|
def val(self, data_loader, **kwargs): |
|
self.model.eval() |
|
self.mode = 'val' |
|
self.data_loader = data_loader |
|
self.call_hook('before_val_epoch') |
|
time.sleep(2) |
|
for i, data_batch in enumerate(self.data_loader): |
|
self._inner_iter = i |
|
self.call_hook('before_val_iter') |
|
self.run_iter(data_batch, train_mode=False) |
|
self.call_hook('after_val_iter') |
|
|
|
self.call_hook('after_val_epoch') |
|
|
|
def run(self, data_loaders, workflow, max_epochs=None, **kwargs): |
|
"""Start running. |
|
|
|
Args: |
|
data_loaders (list[:obj:`DataLoader`]): Dataloaders for training |
|
and validation. |
|
workflow (list[tuple]): A list of (phase, epochs) to specify the |
|
running order and epochs. E.g, [('train', 2), ('val', 1)] means |
|
running 2 epochs for training and 1 epoch for validation, |
|
iteratively. |
|
""" |
|
assert isinstance(data_loaders, list) |
|
assert mmcv.is_list_of(workflow, tuple) |
|
assert len(data_loaders) == len(workflow) |
|
if max_epochs is not None: |
|
warnings.warn( |
|
'setting max_epochs in run is deprecated, ' |
|
'please set max_epochs in runner_config', DeprecationWarning) |
|
self._max_epochs = max_epochs |
|
|
|
assert self._max_epochs is not None, ( |
|
'max_epochs must be specified during instantiation') |
|
|
|
for i, flow in enumerate(workflow): |
|
mode, epochs = flow |
|
if mode == 'train': |
|
self._max_iters = self._max_epochs * len(data_loaders[i]) |
|
break |
|
|
|
work_dir = self.work_dir if self.work_dir is not None else 'NONE' |
|
self.logger.info('Start running, host: %s, work_dir: %s', |
|
get_host_info(), work_dir) |
|
self.logger.info('Hooks will be executed in the following order:\n%s', |
|
self.get_hook_info()) |
|
self.logger.info('workflow: %s, max: %d epochs', workflow, |
|
self._max_epochs) |
|
self.call_hook('before_run') |
|
|
|
while self.epoch < self._max_epochs: |
|
for i, flow in enumerate(workflow): |
|
mode, epochs = flow |
|
if isinstance(mode, str): |
|
if not hasattr(self, mode): |
|
raise ValueError( |
|
f'runner has no method named "{mode}" to run an ' |
|
'epoch') |
|
epoch_runner = getattr(self, mode) |
|
else: |
|
raise TypeError( |
|
'mode in workflow must be a str, but got {}'.format( |
|
type(mode))) |
|
|
|
for _ in range(epochs): |
|
if mode == 'train' and self.epoch >= self._max_epochs: |
|
break |
|
epoch_runner(data_loaders[i], **kwargs) |
|
|
|
time.sleep(1) |
|
self.call_hook('after_run') |
|
|
|
def save_checkpoint(self, |
|
out_dir, |
|
filename_tmpl='epoch_{}.pth', |
|
save_optimizer=True, |
|
meta=None, |
|
create_symlink=True): |
|
"""Save the checkpoint. |
|
|
|
Args: |
|
out_dir (str): The directory that checkpoints are saved. |
|
filename_tmpl (str, optional): The checkpoint filename template, |
|
which contains a placeholder for the epoch number. |
|
Defaults to 'epoch_{}.pth'. |
|
save_optimizer (bool, optional): Whether to save the optimizer to |
|
the checkpoint. Defaults to True. |
|
meta (dict, optional): The meta information to be saved in the |
|
checkpoint. Defaults to None. |
|
create_symlink (bool, optional): Whether to create a symlink |
|
"latest.pth" to point to the latest checkpoint. |
|
Defaults to True. |
|
""" |
|
if meta is None: |
|
meta = {} |
|
elif not isinstance(meta, dict): |
|
raise TypeError( |
|
f'meta should be a dict or None, but got {type(meta)}') |
|
if self.meta is not None: |
|
meta.update(self.meta) |
|
|
|
|
|
|
|
|
|
meta.update(epoch=self.epoch + 1, iter=self.iter) |
|
|
|
filename = filename_tmpl.format(self.epoch + 1) |
|
filepath = osp.join(out_dir, filename) |
|
optimizer = self.optimizer if save_optimizer else None |
|
save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta) |
|
|
|
|
|
if create_symlink: |
|
dst_file = osp.join(out_dir, 'latest.pth') |
|
if platform.system() != 'Windows': |
|
mmcv.symlink(filename, dst_file) |
|
else: |
|
shutil.copy(filepath, dst_file) |
|
|
|
|
|
@RUNNERS.register_module() |
|
class Runner(EpochBasedRunner): |
|
"""Deprecated name of EpochBasedRunner.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
warnings.warn( |
|
'Runner was deprecated, please use EpochBasedRunner instead') |
|
super().__init__(*args, **kwargs) |
|
|