|
|
|
import functools |
|
import os |
|
import subprocess |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.multiprocessing as mp |
|
from torch import distributed as dist |
|
from torch._utils import (_flatten_dense_tensors, _take_tensors, |
|
_unflatten_dense_tensors) |
|
|
|
|
|
def init_dist(launcher, backend='nccl', **kwargs): |
|
if mp.get_start_method(allow_none=True) is None: |
|
mp.set_start_method('spawn') |
|
if launcher == 'pytorch': |
|
_init_dist_pytorch(backend, **kwargs) |
|
elif launcher == 'mpi': |
|
_init_dist_mpi(backend, **kwargs) |
|
elif launcher == 'slurm': |
|
_init_dist_slurm(backend, **kwargs) |
|
else: |
|
raise ValueError(f'Invalid launcher type: {launcher}') |
|
|
|
|
|
def _init_dist_pytorch(backend, **kwargs): |
|
|
|
rank = int(os.environ['RANK']) |
|
num_gpus = torch.cuda.device_count() |
|
torch.cuda.set_device(rank % num_gpus) |
|
dist.init_process_group(backend=backend, **kwargs) |
|
|
|
|
|
def _init_dist_mpi(backend, **kwargs): |
|
|
|
rank = int(os.environ['OMPI_COMM_WORLD_RANK']) |
|
num_gpus = torch.cuda.device_count() |
|
torch.cuda.set_device(rank % num_gpus) |
|
dist.init_process_group(backend=backend, **kwargs) |
|
|
|
|
|
def _init_dist_slurm(backend, port=None): |
|
"""Initialize slurm distributed training environment. |
|
|
|
If argument ``port`` is not specified, then the master port will be system |
|
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system |
|
environment variable, then a default port ``29500`` will be used. |
|
|
|
Args: |
|
backend (str): Backend of torch.distributed. |
|
port (int, optional): Master port. Defaults to None. |
|
""" |
|
proc_id = int(os.environ['SLURM_PROCID']) |
|
ntasks = int(os.environ['SLURM_NTASKS']) |
|
node_list = os.environ['SLURM_NODELIST'] |
|
num_gpus = torch.cuda.device_count() |
|
torch.cuda.set_device(proc_id % num_gpus) |
|
addr = subprocess.getoutput( |
|
f'scontrol show hostname {node_list} | head -n1') |
|
|
|
if port is not None: |
|
os.environ['MASTER_PORT'] = str(port) |
|
elif 'MASTER_PORT' in os.environ: |
|
pass |
|
else: |
|
|
|
os.environ['MASTER_PORT'] = '29500' |
|
|
|
if 'MASTER_ADDR' not in os.environ: |
|
os.environ['MASTER_ADDR'] = addr |
|
os.environ['WORLD_SIZE'] = str(ntasks) |
|
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) |
|
os.environ['RANK'] = str(proc_id) |
|
dist.init_process_group(backend=backend) |
|
|
|
|
|
def get_dist_info(): |
|
if dist.is_available() and dist.is_initialized(): |
|
rank = dist.get_rank() |
|
world_size = dist.get_world_size() |
|
else: |
|
rank = 0 |
|
world_size = 1 |
|
return rank, world_size |
|
|
|
|
|
def master_only(func): |
|
|
|
@functools.wraps(func) |
|
def wrapper(*args, **kwargs): |
|
rank, _ = get_dist_info() |
|
if rank == 0: |
|
return func(*args, **kwargs) |
|
|
|
return wrapper |
|
|
|
|
|
def allreduce_params(params, coalesce=True, bucket_size_mb=-1): |
|
"""Allreduce parameters. |
|
|
|
Args: |
|
params (list[torch.Parameters]): List of parameters or buffers of a |
|
model. |
|
coalesce (bool, optional): Whether allreduce parameters as a whole. |
|
Defaults to True. |
|
bucket_size_mb (int, optional): Size of bucket, the unit is MB. |
|
Defaults to -1. |
|
""" |
|
_, world_size = get_dist_info() |
|
if world_size == 1: |
|
return |
|
params = [param.data for param in params] |
|
if coalesce: |
|
_allreduce_coalesced(params, world_size, bucket_size_mb) |
|
else: |
|
for tensor in params: |
|
dist.all_reduce(tensor.div_(world_size)) |
|
|
|
|
|
def allreduce_grads(params, coalesce=True, bucket_size_mb=-1): |
|
"""Allreduce gradients. |
|
|
|
Args: |
|
params (list[torch.Parameters]): List of parameters of a model |
|
coalesce (bool, optional): Whether allreduce parameters as a whole. |
|
Defaults to True. |
|
bucket_size_mb (int, optional): Size of bucket, the unit is MB. |
|
Defaults to -1. |
|
""" |
|
grads = [ |
|
param.grad.data for param in params |
|
if param.requires_grad and param.grad is not None |
|
] |
|
_, world_size = get_dist_info() |
|
if world_size == 1: |
|
return |
|
if coalesce: |
|
_allreduce_coalesced(grads, world_size, bucket_size_mb) |
|
else: |
|
for tensor in grads: |
|
dist.all_reduce(tensor.div_(world_size)) |
|
|
|
|
|
def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): |
|
if bucket_size_mb > 0: |
|
bucket_size_bytes = bucket_size_mb * 1024 * 1024 |
|
buckets = _take_tensors(tensors, bucket_size_bytes) |
|
else: |
|
buckets = OrderedDict() |
|
for tensor in tensors: |
|
tp = tensor.type() |
|
if tp not in buckets: |
|
buckets[tp] = [] |
|
buckets[tp].append(tensor) |
|
buckets = buckets.values() |
|
|
|
for bucket in buckets: |
|
flat_tensors = _flatten_dense_tensors(bucket) |
|
dist.all_reduce(flat_tensors) |
|
flat_tensors.div_(world_size) |
|
for tensor, synced in zip( |
|
bucket, _unflatten_dense_tensors(flat_tensors, bucket)): |
|
tensor.copy_(synced) |
|
|