|
|
|
import torch |
|
from torch import nn as nn |
|
from torch.autograd import Function |
|
|
|
import annotator.mmpkg.mmcv as mmcv |
|
from ..utils import ext_loader |
|
|
|
ext_module = ext_loader.load_ext( |
|
'_ext', ['roiaware_pool3d_forward', 'roiaware_pool3d_backward']) |
|
|
|
|
|
class RoIAwarePool3d(nn.Module): |
|
"""Encode the geometry-specific features of each 3D proposal. |
|
|
|
Please refer to `PartA2 <https://arxiv.org/pdf/1907.03670.pdf>`_ for more |
|
details. |
|
|
|
Args: |
|
out_size (int or tuple): The size of output features. n or |
|
[n1, n2, n3]. |
|
max_pts_per_voxel (int, optional): The maximum number of points per |
|
voxel. Default: 128. |
|
mode (str, optional): Pooling method of RoIAware, 'max' or 'avg'. |
|
Default: 'max'. |
|
""" |
|
|
|
def __init__(self, out_size, max_pts_per_voxel=128, mode='max'): |
|
super().__init__() |
|
|
|
self.out_size = out_size |
|
self.max_pts_per_voxel = max_pts_per_voxel |
|
assert mode in ['max', 'avg'] |
|
pool_mapping = {'max': 0, 'avg': 1} |
|
self.mode = pool_mapping[mode] |
|
|
|
def forward(self, rois, pts, pts_feature): |
|
""" |
|
Args: |
|
rois (torch.Tensor): [N, 7], in LiDAR coordinate, |
|
(x, y, z) is the bottom center of rois. |
|
pts (torch.Tensor): [npoints, 3], coordinates of input points. |
|
pts_feature (torch.Tensor): [npoints, C], features of input points. |
|
|
|
Returns: |
|
pooled_features (torch.Tensor): [N, out_x, out_y, out_z, C] |
|
""" |
|
|
|
return RoIAwarePool3dFunction.apply(rois, pts, pts_feature, |
|
self.out_size, |
|
self.max_pts_per_voxel, self.mode) |
|
|
|
|
|
class RoIAwarePool3dFunction(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, rois, pts, pts_feature, out_size, max_pts_per_voxel, |
|
mode): |
|
""" |
|
Args: |
|
rois (torch.Tensor): [N, 7], in LiDAR coordinate, |
|
(x, y, z) is the bottom center of rois. |
|
pts (torch.Tensor): [npoints, 3], coordinates of input points. |
|
pts_feature (torch.Tensor): [npoints, C], features of input points. |
|
out_size (int or tuple): The size of output features. n or |
|
[n1, n2, n3]. |
|
max_pts_per_voxel (int): The maximum number of points per voxel. |
|
Default: 128. |
|
mode (int): Pooling method of RoIAware, 0 (max pool) or 1 (average |
|
pool). |
|
|
|
Returns: |
|
pooled_features (torch.Tensor): [N, out_x, out_y, out_z, C], output |
|
pooled features. |
|
""" |
|
|
|
if isinstance(out_size, int): |
|
out_x = out_y = out_z = out_size |
|
else: |
|
assert len(out_size) == 3 |
|
assert mmcv.is_tuple_of(out_size, int) |
|
out_x, out_y, out_z = out_size |
|
|
|
num_rois = rois.shape[0] |
|
num_channels = pts_feature.shape[-1] |
|
num_pts = pts.shape[0] |
|
|
|
pooled_features = pts_feature.new_zeros( |
|
(num_rois, out_x, out_y, out_z, num_channels)) |
|
argmax = pts_feature.new_zeros( |
|
(num_rois, out_x, out_y, out_z, num_channels), dtype=torch.int) |
|
pts_idx_of_voxels = pts_feature.new_zeros( |
|
(num_rois, out_x, out_y, out_z, max_pts_per_voxel), |
|
dtype=torch.int) |
|
|
|
ext_module.roiaware_pool3d_forward(rois, pts, pts_feature, argmax, |
|
pts_idx_of_voxels, pooled_features, |
|
mode) |
|
|
|
ctx.roiaware_pool3d_for_backward = (pts_idx_of_voxels, argmax, mode, |
|
num_pts, num_channels) |
|
return pooled_features |
|
|
|
@staticmethod |
|
def backward(ctx, grad_out): |
|
ret = ctx.roiaware_pool3d_for_backward |
|
pts_idx_of_voxels, argmax, mode, num_pts, num_channels = ret |
|
|
|
grad_in = grad_out.new_zeros((num_pts, num_channels)) |
|
ext_module.roiaware_pool3d_backward(pts_idx_of_voxels, argmax, |
|
grad_out.contiguous(), grad_in, |
|
mode) |
|
|
|
return None, None, grad_in, None, None, None |
|
|