|
import torch |
|
|
|
from ..utils import ext_loader |
|
|
|
ext_module = ext_loader.load_ext('_ext', [ |
|
'points_in_boxes_part_forward', 'points_in_boxes_cpu_forward', |
|
'points_in_boxes_all_forward' |
|
]) |
|
|
|
|
|
def points_in_boxes_part(points, boxes): |
|
"""Find the box in which each point is (CUDA). |
|
|
|
Args: |
|
points (torch.Tensor): [B, M, 3], [x, y, z] in LiDAR/DEPTH coordinate |
|
boxes (torch.Tensor): [B, T, 7], |
|
num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz] in |
|
LiDAR/DEPTH coordinate, (x, y, z) is the bottom center |
|
|
|
Returns: |
|
box_idxs_of_pts (torch.Tensor): (B, M), default background = -1 |
|
""" |
|
assert points.shape[0] == boxes.shape[0], \ |
|
'Points and boxes should have the same batch size, ' \ |
|
f'but got {points.shape[0]} and {boxes.shape[0]}' |
|
assert boxes.shape[2] == 7, \ |
|
'boxes dimension should be 7, ' \ |
|
f'but got unexpected shape {boxes.shape[2]}' |
|
assert points.shape[2] == 3, \ |
|
'points dimension should be 3, ' \ |
|
f'but got unexpected shape {points.shape[2]}' |
|
batch_size, num_points, _ = points.shape |
|
|
|
box_idxs_of_pts = points.new_zeros((batch_size, num_points), |
|
dtype=torch.int).fill_(-1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
points_device = points.get_device() |
|
assert points_device == boxes.get_device(), \ |
|
'Points and boxes should be put on the same device' |
|
if torch.cuda.current_device() != points_device: |
|
torch.cuda.set_device(points_device) |
|
|
|
ext_module.points_in_boxes_part_forward(boxes.contiguous(), |
|
points.contiguous(), |
|
box_idxs_of_pts) |
|
|
|
return box_idxs_of_pts |
|
|
|
|
|
def points_in_boxes_cpu(points, boxes): |
|
"""Find all boxes in which each point is (CPU). The CPU version of |
|
:meth:`points_in_boxes_all`. |
|
|
|
Args: |
|
points (torch.Tensor): [B, M, 3], [x, y, z] in |
|
LiDAR/DEPTH coordinate |
|
boxes (torch.Tensor): [B, T, 7], |
|
num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz], |
|
(x, y, z) is the bottom center. |
|
|
|
Returns: |
|
box_idxs_of_pts (torch.Tensor): (B, M, T), default background = 0. |
|
""" |
|
assert points.shape[0] == boxes.shape[0], \ |
|
'Points and boxes should have the same batch size, ' \ |
|
f'but got {points.shape[0]} and {boxes.shape[0]}' |
|
assert boxes.shape[2] == 7, \ |
|
'boxes dimension should be 7, ' \ |
|
f'but got unexpected shape {boxes.shape[2]}' |
|
assert points.shape[2] == 3, \ |
|
'points dimension should be 3, ' \ |
|
f'but got unexpected shape {points.shape[2]}' |
|
batch_size, num_points, _ = points.shape |
|
num_boxes = boxes.shape[1] |
|
|
|
point_indices = points.new_zeros((batch_size, num_boxes, num_points), |
|
dtype=torch.int) |
|
for b in range(batch_size): |
|
ext_module.points_in_boxes_cpu_forward(boxes[b].float().contiguous(), |
|
points[b].float().contiguous(), |
|
point_indices[b]) |
|
point_indices = point_indices.transpose(1, 2) |
|
|
|
return point_indices |
|
|
|
|
|
def points_in_boxes_all(points, boxes): |
|
"""Find all boxes in which each point is (CUDA). |
|
|
|
Args: |
|
points (torch.Tensor): [B, M, 3], [x, y, z] in LiDAR/DEPTH coordinate |
|
boxes (torch.Tensor): [B, T, 7], |
|
num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz], |
|
(x, y, z) is the bottom center. |
|
|
|
Returns: |
|
box_idxs_of_pts (torch.Tensor): (B, M, T), default background = 0. |
|
""" |
|
assert boxes.shape[0] == points.shape[0], \ |
|
'Points and boxes should have the same batch size, ' \ |
|
f'but got {boxes.shape[0]} and {boxes.shape[0]}' |
|
assert boxes.shape[2] == 7, \ |
|
'boxes dimension should be 7, ' \ |
|
f'but got unexpected shape {boxes.shape[2]}' |
|
assert points.shape[2] == 3, \ |
|
'points dimension should be 3, ' \ |
|
f'but got unexpected shape {points.shape[2]}' |
|
batch_size, num_points, _ = points.shape |
|
num_boxes = boxes.shape[1] |
|
|
|
box_idxs_of_pts = points.new_zeros((batch_size, num_points, num_boxes), |
|
dtype=torch.int).fill_(0) |
|
|
|
|
|
points_device = points.get_device() |
|
assert points_device == boxes.get_device(), \ |
|
'Points and boxes should be put on the same device' |
|
if torch.cuda.current_device() != points_device: |
|
torch.cuda.set_device(points_device) |
|
|
|
ext_module.points_in_boxes_all_forward(boxes.contiguous(), |
|
points.contiguous(), |
|
box_idxs_of_pts) |
|
|
|
return box_idxs_of_pts |
|
|