atatakun's picture
Duplicate from atatakun/testapp2
18dd6ad
raw
history blame
15.6 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair, _single
from annotator.mmpkg.mmcv.utils import deprecated_api_warning
from ..cnn import CONV_LAYERS
from ..utils import ext_loader, print_log
ext_module = ext_loader.load_ext('_ext', [
'deform_conv_forward', 'deform_conv_backward_input',
'deform_conv_backward_parameters'
])
class DeformConv2dFunction(Function):
@staticmethod
def symbolic(g,
input,
offset,
weight,
stride,
padding,
dilation,
groups,
deform_groups,
bias=False,
im2col_step=32):
return g.op(
'mmcv::MMCVDeformConv2d',
input,
offset,
weight,
stride_i=stride,
padding_i=padding,
dilation_i=dilation,
groups_i=groups,
deform_groups_i=deform_groups,
bias_i=bias,
im2col_step_i=im2col_step)
@staticmethod
def forward(ctx,
input,
offset,
weight,
stride=1,
padding=0,
dilation=1,
groups=1,
deform_groups=1,
bias=False,
im2col_step=32):
if input is not None and input.dim() != 4:
raise ValueError(
f'Expected 4D tensor as input, got {input.dim()}D tensor \
instead.')
assert bias is False, 'Only support bias is False.'
ctx.stride = _pair(stride)
ctx.padding = _pair(padding)
ctx.dilation = _pair(dilation)
ctx.groups = groups
ctx.deform_groups = deform_groups
ctx.im2col_step = im2col_step
# When pytorch version >= 1.6.0, amp is adopted for fp16 mode;
# amp won't cast the type of model (float32), but "offset" is cast
# to float16 by nn.Conv2d automatically, leading to the type
# mismatch with input (when it is float32) or weight.
# The flag for whether to use fp16 or amp is the type of "offset",
# we cast weight and input to temporarily support fp16 and amp
# whatever the pytorch version is.
input = input.type_as(offset)
weight = weight.type_as(input)
ctx.save_for_backward(input, offset, weight)
output = input.new_empty(
DeformConv2dFunction._output_size(ctx, input, weight))
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones
cur_im2col_step = min(ctx.im2col_step, input.size(0))
assert (input.size(0) %
cur_im2col_step) == 0, 'im2col step must divide batchsize'
ext_module.deform_conv_forward(
input,
weight,
offset,
output,
ctx.bufs_[0],
ctx.bufs_[1],
kW=weight.size(3),
kH=weight.size(2),
dW=ctx.stride[1],
dH=ctx.stride[0],
padW=ctx.padding[1],
padH=ctx.padding[0],
dilationW=ctx.dilation[1],
dilationH=ctx.dilation[0],
group=ctx.groups,
deformable_group=ctx.deform_groups,
im2col_step=cur_im2col_step)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
input, offset, weight = ctx.saved_tensors
grad_input = grad_offset = grad_weight = None
cur_im2col_step = min(ctx.im2col_step, input.size(0))
assert (input.size(0) % cur_im2col_step
) == 0, 'batch size must be divisible by im2col_step'
grad_output = grad_output.contiguous()
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
grad_input = torch.zeros_like(input)
grad_offset = torch.zeros_like(offset)
ext_module.deform_conv_backward_input(
input,
offset,
grad_output,
grad_input,
grad_offset,
weight,
ctx.bufs_[0],
kW=weight.size(3),
kH=weight.size(2),
dW=ctx.stride[1],
dH=ctx.stride[0],
padW=ctx.padding[1],
padH=ctx.padding[0],
dilationW=ctx.dilation[1],
dilationH=ctx.dilation[0],
group=ctx.groups,
deformable_group=ctx.deform_groups,
im2col_step=cur_im2col_step)
if ctx.needs_input_grad[2]:
grad_weight = torch.zeros_like(weight)
ext_module.deform_conv_backward_parameters(
input,
offset,
grad_output,
grad_weight,
ctx.bufs_[0],
ctx.bufs_[1],
kW=weight.size(3),
kH=weight.size(2),
dW=ctx.stride[1],
dH=ctx.stride[0],
padW=ctx.padding[1],
padH=ctx.padding[0],
dilationW=ctx.dilation[1],
dilationH=ctx.dilation[0],
group=ctx.groups,
deformable_group=ctx.deform_groups,
scale=1,
im2col_step=cur_im2col_step)
return grad_input, grad_offset, grad_weight, \
None, None, None, None, None, None, None
@staticmethod
def _output_size(ctx, input, weight):
channels = weight.size(0)
output_size = (input.size(0), channels)
for d in range(input.dim() - 2):
in_size = input.size(d + 2)
pad = ctx.padding[d]
kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1
stride_ = ctx.stride[d]
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
if not all(map(lambda s: s > 0, output_size)):
raise ValueError(
'convolution input is too small (output would be ' +
'x'.join(map(str, output_size)) + ')')
return output_size
deform_conv2d = DeformConv2dFunction.apply
class DeformConv2d(nn.Module):
r"""Deformable 2D convolution.
Applies a deformable 2D convolution over an input signal composed of
several input planes. DeformConv2d was described in the paper
`Deformable Convolutional Networks
<https://arxiv.org/pdf/1703.06211.pdf>`_
Note:
The argument ``im2col_step`` was added in version 1.3.17, which means
number of samples processed by the ``im2col_cuda_kernel`` per call.
It enables users to define ``batch_size`` and ``im2col_step`` more
flexibly and solved `issue mmcv#1440
<https://github.com/open-mmlab/mmcv/issues/1440>`_.
Args:
in_channels (int): Number of channels in the input image.
out_channels (int): Number of channels produced by the convolution.
kernel_size(int, tuple): Size of the convolving kernel.
stride(int, tuple): Stride of the convolution. Default: 1.
padding (int or tuple): Zero-padding added to both sides of the input.
Default: 0.
dilation (int or tuple): Spacing between kernel elements. Default: 1.
groups (int): Number of blocked connections from input.
channels to output channels. Default: 1.
deform_groups (int): Number of deformable group partitions.
bias (bool): If True, adds a learnable bias to the output.
Default: False.
im2col_step (int): Number of samples processed by im2col_cuda_kernel
per call. It will work when ``batch_size`` > ``im2col_step``, but
``batch_size`` must be divisible by ``im2col_step``. Default: 32.
`New in version 1.3.17.`
"""
@deprecated_api_warning({'deformable_groups': 'deform_groups'},
cls_name='DeformConv2d')
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, ...]],
stride: Union[int, Tuple[int, ...]] = 1,
padding: Union[int, Tuple[int, ...]] = 0,
dilation: Union[int, Tuple[int, ...]] = 1,
groups: int = 1,
deform_groups: int = 1,
bias: bool = False,
im2col_step: int = 32) -> None:
super(DeformConv2d, self).__init__()
assert not bias, \
f'bias={bias} is not supported in DeformConv2d.'
assert in_channels % groups == 0, \
f'in_channels {in_channels} cannot be divisible by groups {groups}'
assert out_channels % groups == 0, \
f'out_channels {out_channels} cannot be divisible by groups \
{groups}'
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
self.padding = _pair(padding)
self.dilation = _pair(dilation)
self.groups = groups
self.deform_groups = deform_groups
self.im2col_step = im2col_step
# enable compatibility with nn.Conv2d
self.transposed = False
self.output_padding = _single(0)
# only weight, no bias
self.weight = nn.Parameter(
torch.Tensor(out_channels, in_channels // self.groups,
*self.kernel_size))
self.reset_parameters()
def reset_parameters(self):
# switch the initialization of `self.weight` to the standard kaiming
# method described in `Delving deep into rectifiers: Surpassing
# human-level performance on ImageNet classification` - He, K. et al.
# (2015), using a uniform distribution
nn.init.kaiming_uniform_(self.weight, nonlinearity='relu')
def forward(self, x: Tensor, offset: Tensor) -> Tensor:
"""Deformable Convolutional forward function.
Args:
x (Tensor): Input feature, shape (B, C_in, H_in, W_in)
offset (Tensor): Offset for deformable convolution, shape
(B, deform_groups*kernel_size[0]*kernel_size[1]*2,
H_out, W_out), H_out, W_out are equal to the output's.
An offset is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`.
The spatial arrangement is like:
.. code:: text
(x0, y0) (x1, y1) (x2, y2)
(x3, y3) (x4, y4) (x5, y5)
(x6, y6) (x7, y7) (x8, y8)
Returns:
Tensor: Output of the layer.
"""
# To fix an assert error in deform_conv_cuda.cpp:128
# input image is smaller than kernel
input_pad = (x.size(2) < self.kernel_size[0]) or (x.size(3) <
self.kernel_size[1])
if input_pad:
pad_h = max(self.kernel_size[0] - x.size(2), 0)
pad_w = max(self.kernel_size[1] - x.size(3), 0)
x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous()
offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0)
offset = offset.contiguous()
out = deform_conv2d(x, offset, self.weight, self.stride, self.padding,
self.dilation, self.groups, self.deform_groups,
False, self.im2col_step)
if input_pad:
out = out[:, :, :out.size(2) - pad_h, :out.size(3) -
pad_w].contiguous()
return out
def __repr__(self):
s = self.__class__.__name__
s += f'(in_channels={self.in_channels},\n'
s += f'out_channels={self.out_channels},\n'
s += f'kernel_size={self.kernel_size},\n'
s += f'stride={self.stride},\n'
s += f'padding={self.padding},\n'
s += f'dilation={self.dilation},\n'
s += f'groups={self.groups},\n'
s += f'deform_groups={self.deform_groups},\n'
# bias is not supported in DeformConv2d.
s += 'bias=False)'
return s
@CONV_LAYERS.register_module('DCN')
class DeformConv2dPack(DeformConv2d):
"""A Deformable Conv Encapsulation that acts as normal Conv layers.
The offset tensor is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`.
The spatial arrangement is like:
.. code:: text
(x0, y0) (x1, y1) (x2, y2)
(x3, y3) (x4, y4) (x5, y5)
(x6, y6) (x7, y7) (x8, y8)
Args:
in_channels (int): Same as nn.Conv2d.
out_channels (int): Same as nn.Conv2d.
kernel_size (int or tuple[int]): Same as nn.Conv2d.
stride (int or tuple[int]): Same as nn.Conv2d.
padding (int or tuple[int]): Same as nn.Conv2d.
dilation (int or tuple[int]): Same as nn.Conv2d.
groups (int): Same as nn.Conv2d.
bias (bool or str): If specified as `auto`, it will be decided by the
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
False.
"""
_version = 2
def __init__(self, *args, **kwargs):
super(DeformConv2dPack, self).__init__(*args, **kwargs)
self.conv_offset = nn.Conv2d(
self.in_channels,
self.deform_groups * 2 * self.kernel_size[0] * self.kernel_size[1],
kernel_size=self.kernel_size,
stride=_pair(self.stride),
padding=_pair(self.padding),
dilation=_pair(self.dilation),
bias=True)
self.init_offset()
def init_offset(self):
self.conv_offset.weight.data.zero_()
self.conv_offset.bias.data.zero_()
def forward(self, x):
offset = self.conv_offset(x)
return deform_conv2d(x, offset, self.weight, self.stride, self.padding,
self.dilation, self.groups, self.deform_groups,
False, self.im2col_step)
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
version = local_metadata.get('version', None)
if version is None or version < 2:
# the key is different in early versions
# In version < 2, DeformConvPack loads previous benchmark models.
if (prefix + 'conv_offset.weight' not in state_dict
and prefix[:-1] + '_offset.weight' in state_dict):
state_dict[prefix + 'conv_offset.weight'] = state_dict.pop(
prefix[:-1] + '_offset.weight')
if (prefix + 'conv_offset.bias' not in state_dict
and prefix[:-1] + '_offset.bias' in state_dict):
state_dict[prefix +
'conv_offset.bias'] = state_dict.pop(prefix[:-1] +
'_offset.bias')
if version is not None and version > 1:
print_log(
f'DeformConv2dPack {prefix.rstrip(".")} is upgraded to '
'version 2.',
logger='root')
super()._load_from_state_dict(state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys,
error_msgs)