|
|
|
import logging |
|
|
|
import torch.nn as nn |
|
|
|
|
|
class AlexNet(nn.Module): |
|
"""AlexNet backbone. |
|
|
|
Args: |
|
num_classes (int): number of classes for classification. |
|
""" |
|
|
|
def __init__(self, num_classes=-1): |
|
super(AlexNet, self).__init__() |
|
self.num_classes = num_classes |
|
self.features = nn.Sequential( |
|
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
nn.Conv2d(64, 192, kernel_size=5, padding=2), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
nn.Conv2d(192, 384, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(384, 256, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 256, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
) |
|
if self.num_classes > 0: |
|
self.classifier = nn.Sequential( |
|
nn.Dropout(), |
|
nn.Linear(256 * 6 * 6, 4096), |
|
nn.ReLU(inplace=True), |
|
nn.Dropout(), |
|
nn.Linear(4096, 4096), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(4096, num_classes), |
|
) |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = logging.getLogger() |
|
from ..runner import load_checkpoint |
|
load_checkpoint(self, pretrained, strict=False, logger=logger) |
|
elif pretrained is None: |
|
|
|
pass |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def forward(self, x): |
|
|
|
x = self.features(x) |
|
if self.num_classes > 0: |
|
x = x.view(x.size(0), 256 * 6 * 6) |
|
x = self.classifier(x) |
|
|
|
return x |
|
|