|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn.modules.utils import _pair |
|
|
|
from ..utils import ext_loader |
|
|
|
ext_module = ext_loader.load_ext('_ext', |
|
['roi_pool_forward', 'roi_pool_backward']) |
|
|
|
|
|
class RoIPoolFunction(Function): |
|
|
|
@staticmethod |
|
def symbolic(g, input, rois, output_size, spatial_scale): |
|
return g.op( |
|
'MaxRoiPool', |
|
input, |
|
rois, |
|
pooled_shape_i=output_size, |
|
spatial_scale_f=spatial_scale) |
|
|
|
@staticmethod |
|
def forward(ctx, input, rois, output_size, spatial_scale=1.0): |
|
ctx.output_size = _pair(output_size) |
|
ctx.spatial_scale = spatial_scale |
|
ctx.input_shape = input.size() |
|
|
|
assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' |
|
|
|
output_shape = (rois.size(0), input.size(1), ctx.output_size[0], |
|
ctx.output_size[1]) |
|
output = input.new_zeros(output_shape) |
|
argmax = input.new_zeros(output_shape, dtype=torch.int) |
|
|
|
ext_module.roi_pool_forward( |
|
input, |
|
rois, |
|
output, |
|
argmax, |
|
pooled_height=ctx.output_size[0], |
|
pooled_width=ctx.output_size[1], |
|
spatial_scale=ctx.spatial_scale) |
|
|
|
ctx.save_for_backward(rois, argmax) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
rois, argmax = ctx.saved_tensors |
|
grad_input = grad_output.new_zeros(ctx.input_shape) |
|
|
|
ext_module.roi_pool_backward( |
|
grad_output, |
|
rois, |
|
argmax, |
|
grad_input, |
|
pooled_height=ctx.output_size[0], |
|
pooled_width=ctx.output_size[1], |
|
spatial_scale=ctx.spatial_scale) |
|
|
|
return grad_input, None, None, None |
|
|
|
|
|
roi_pool = RoIPoolFunction.apply |
|
|
|
|
|
class RoIPool(nn.Module): |
|
|
|
def __init__(self, output_size, spatial_scale=1.0): |
|
super(RoIPool, self).__init__() |
|
|
|
self.output_size = _pair(output_size) |
|
self.spatial_scale = float(spatial_scale) |
|
|
|
def forward(self, input, rois): |
|
return roi_pool(input, rois, self.output_size, self.spatial_scale) |
|
|
|
def __repr__(self): |
|
s = self.__class__.__name__ |
|
s += f'(output_size={self.output_size}, ' |
|
s += f'spatial_scale={self.spatial_scale})' |
|
return s |
|
|