|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from annotator.uniformer.mmcv.cnn import PLUGIN_LAYERS, Scale |
|
|
|
|
|
def NEG_INF_DIAG(n, device): |
|
"""Returns a diagonal matrix of size [n, n]. |
|
|
|
The diagonal are all "-inf". This is for avoiding calculating the |
|
overlapped element in the Criss-Cross twice. |
|
""" |
|
return torch.diag(torch.tensor(float('-inf')).to(device).repeat(n), 0) |
|
|
|
|
|
@PLUGIN_LAYERS.register_module() |
|
class CrissCrossAttention(nn.Module): |
|
"""Criss-Cross Attention Module. |
|
|
|
.. note:: |
|
Before v1.3.13, we use a CUDA op. Since v1.3.13, we switch |
|
to a pure PyTorch and equivalent implementation. For more |
|
details, please refer to https://github.com/open-mmlab/mmcv/pull/1201. |
|
|
|
Speed comparison for one forward pass |
|
|
|
- Input size: [2,512,97,97] |
|
- Device: 1 NVIDIA GeForce RTX 2080 Ti |
|
|
|
+-----------------------+---------------+------------+---------------+ |
|
| |PyTorch version|CUDA version|Relative speed | |
|
+=======================+===============+============+===============+ |
|
|with torch.no_grad() |0.00554402 s |0.0299619 s |5.4x | |
|
+-----------------------+---------------+------------+---------------+ |
|
|no with torch.no_grad()|0.00562803 s |0.0301349 s |5.4x | |
|
+-----------------------+---------------+------------+---------------+ |
|
|
|
Args: |
|
in_channels (int): Channels of the input feature map. |
|
""" |
|
|
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.query_conv = nn.Conv2d(in_channels, in_channels // 8, 1) |
|
self.key_conv = nn.Conv2d(in_channels, in_channels // 8, 1) |
|
self.value_conv = nn.Conv2d(in_channels, in_channels, 1) |
|
self.gamma = Scale(0.) |
|
self.in_channels = in_channels |
|
|
|
def forward(self, x): |
|
"""forward function of Criss-Cross Attention. |
|
|
|
Args: |
|
x (Tensor): Input feature. \ |
|
shape (batch_size, in_channels, height, width) |
|
Returns: |
|
Tensor: Output of the layer, with shape of \ |
|
(batch_size, in_channels, height, width) |
|
""" |
|
B, C, H, W = x.size() |
|
query = self.query_conv(x) |
|
key = self.key_conv(x) |
|
value = self.value_conv(x) |
|
energy_H = torch.einsum('bchw,bciw->bwhi', query, key) + NEG_INF_DIAG( |
|
H, query.device) |
|
energy_H = energy_H.transpose(1, 2) |
|
energy_W = torch.einsum('bchw,bchj->bhwj', query, key) |
|
attn = F.softmax( |
|
torch.cat([energy_H, energy_W], dim=-1), dim=-1) |
|
out = torch.einsum('bciw,bhwi->bchw', value, attn[..., :H]) |
|
out += torch.einsum('bchj,bhwj->bchw', value, attn[..., H:]) |
|
|
|
out = self.gamma(out) + x |
|
out = out.contiguous() |
|
|
|
return out |
|
|
|
def __repr__(self): |
|
s = self.__class__.__name__ |
|
s += f'(in_channels={self.in_channels})' |
|
return s |
|
|