|
|
|
import os.path as osp |
|
import pickle |
|
import shutil |
|
import tempfile |
|
import time |
|
|
|
import torch |
|
import torch.distributed as dist |
|
|
|
import annotator.uniformer.mmcv as mmcv |
|
from annotator.uniformer.mmcv.runner import get_dist_info |
|
|
|
|
|
def single_gpu_test(model, data_loader): |
|
"""Test model with a single gpu. |
|
|
|
This method tests model with a single gpu and displays test progress bar. |
|
|
|
Args: |
|
model (nn.Module): Model to be tested. |
|
data_loader (nn.Dataloader): Pytorch data loader. |
|
|
|
Returns: |
|
list: The prediction results. |
|
""" |
|
model.eval() |
|
results = [] |
|
dataset = data_loader.dataset |
|
prog_bar = mmcv.ProgressBar(len(dataset)) |
|
for data in data_loader: |
|
with torch.no_grad(): |
|
result = model(return_loss=False, **data) |
|
results.extend(result) |
|
|
|
|
|
|
|
batch_size = len(result) |
|
for _ in range(batch_size): |
|
prog_bar.update() |
|
return results |
|
|
|
|
|
def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False): |
|
"""Test model with multiple gpus. |
|
|
|
This method tests model with multiple gpus and collects the results |
|
under two different modes: gpu and cpu modes. By setting |
|
``gpu_collect=True``, it encodes results to gpu tensors and use gpu |
|
communication for results collection. On cpu mode it saves the results on |
|
different gpus to ``tmpdir`` and collects them by the rank 0 worker. |
|
|
|
Args: |
|
model (nn.Module): Model to be tested. |
|
data_loader (nn.Dataloader): Pytorch data loader. |
|
tmpdir (str): Path of directory to save the temporary results from |
|
different gpus under cpu mode. |
|
gpu_collect (bool): Option to use either gpu or cpu to collect results. |
|
|
|
Returns: |
|
list: The prediction results. |
|
""" |
|
model.eval() |
|
results = [] |
|
dataset = data_loader.dataset |
|
rank, world_size = get_dist_info() |
|
if rank == 0: |
|
prog_bar = mmcv.ProgressBar(len(dataset)) |
|
time.sleep(2) |
|
for i, data in enumerate(data_loader): |
|
with torch.no_grad(): |
|
result = model(return_loss=False, **data) |
|
results.extend(result) |
|
|
|
if rank == 0: |
|
batch_size = len(result) |
|
batch_size_all = batch_size * world_size |
|
if batch_size_all + prog_bar.completed > len(dataset): |
|
batch_size_all = len(dataset) - prog_bar.completed |
|
for _ in range(batch_size_all): |
|
prog_bar.update() |
|
|
|
|
|
if gpu_collect: |
|
results = collect_results_gpu(results, len(dataset)) |
|
else: |
|
results = collect_results_cpu(results, len(dataset), tmpdir) |
|
return results |
|
|
|
|
|
def collect_results_cpu(result_part, size, tmpdir=None): |
|
"""Collect results under cpu mode. |
|
|
|
On cpu mode, this function will save the results on different gpus to |
|
``tmpdir`` and collect them by the rank 0 worker. |
|
|
|
Args: |
|
result_part (list): Result list containing result parts |
|
to be collected. |
|
size (int): Size of the results, commonly equal to length of |
|
the results. |
|
tmpdir (str | None): temporal directory for collected results to |
|
store. If set to None, it will create a random temporal directory |
|
for it. |
|
|
|
Returns: |
|
list: The collected results. |
|
""" |
|
rank, world_size = get_dist_info() |
|
|
|
if tmpdir is None: |
|
MAX_LEN = 512 |
|
|
|
dir_tensor = torch.full((MAX_LEN, ), |
|
32, |
|
dtype=torch.uint8, |
|
device='cuda') |
|
if rank == 0: |
|
mmcv.mkdir_or_exist('.dist_test') |
|
tmpdir = tempfile.mkdtemp(dir='.dist_test') |
|
tmpdir = torch.tensor( |
|
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') |
|
dir_tensor[:len(tmpdir)] = tmpdir |
|
dist.broadcast(dir_tensor, 0) |
|
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() |
|
else: |
|
mmcv.mkdir_or_exist(tmpdir) |
|
|
|
mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl')) |
|
dist.barrier() |
|
|
|
if rank != 0: |
|
return None |
|
else: |
|
|
|
part_list = [] |
|
for i in range(world_size): |
|
part_file = osp.join(tmpdir, f'part_{i}.pkl') |
|
part_result = mmcv.load(part_file) |
|
|
|
|
|
if part_result: |
|
part_list.append(part_result) |
|
|
|
ordered_results = [] |
|
for res in zip(*part_list): |
|
ordered_results.extend(list(res)) |
|
|
|
ordered_results = ordered_results[:size] |
|
|
|
shutil.rmtree(tmpdir) |
|
return ordered_results |
|
|
|
|
|
def collect_results_gpu(result_part, size): |
|
"""Collect results under gpu mode. |
|
|
|
On gpu mode, this function will encode results to gpu tensors and use gpu |
|
communication for results collection. |
|
|
|
Args: |
|
result_part (list): Result list containing result parts |
|
to be collected. |
|
size (int): Size of the results, commonly equal to length of |
|
the results. |
|
|
|
Returns: |
|
list: The collected results. |
|
""" |
|
rank, world_size = get_dist_info() |
|
|
|
part_tensor = torch.tensor( |
|
bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda') |
|
|
|
shape_tensor = torch.tensor(part_tensor.shape, device='cuda') |
|
shape_list = [shape_tensor.clone() for _ in range(world_size)] |
|
dist.all_gather(shape_list, shape_tensor) |
|
|
|
shape_max = torch.tensor(shape_list).max() |
|
part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda') |
|
part_send[:shape_tensor[0]] = part_tensor |
|
part_recv_list = [ |
|
part_tensor.new_zeros(shape_max) for _ in range(world_size) |
|
] |
|
|
|
dist.all_gather(part_recv_list, part_send) |
|
|
|
if rank == 0: |
|
part_list = [] |
|
for recv, shape in zip(part_recv_list, shape_list): |
|
part_result = pickle.loads(recv[:shape[0]].cpu().numpy().tobytes()) |
|
|
|
|
|
if part_result: |
|
part_list.append(part_result) |
|
|
|
ordered_results = [] |
|
for res in zip(*part_list): |
|
ordered_results.extend(list(res)) |
|
|
|
ordered_results = ordered_results[:size] |
|
return ordered_results |
|
|