|
|
|
r"""Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/wrappers.py # noqa: E501 |
|
|
|
Wrap some nn modules to support empty tensor input. Currently, these wrappers |
|
are mainly used in mask heads like fcn_mask_head and maskiou_heads since mask |
|
heads are trained on only positive RoIs. |
|
""" |
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn.modules.utils import _pair, _triple |
|
|
|
from .registry import CONV_LAYERS, UPSAMPLE_LAYERS |
|
|
|
if torch.__version__ == 'parrots': |
|
TORCH_VERSION = torch.__version__ |
|
else: |
|
|
|
|
|
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2]) |
|
|
|
|
|
def obsolete_torch_version(torch_version, version_threshold): |
|
return torch_version == 'parrots' or torch_version <= version_threshold |
|
|
|
|
|
class NewEmptyTensorOp(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, x, new_shape): |
|
ctx.shape = x.shape |
|
return x.new_empty(new_shape) |
|
|
|
@staticmethod |
|
def backward(ctx, grad): |
|
shape = ctx.shape |
|
return NewEmptyTensorOp.apply(grad, shape), None |
|
|
|
|
|
@CONV_LAYERS.register_module('Conv', force=True) |
|
class Conv2d(nn.Conv2d): |
|
|
|
def forward(self, x): |
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)): |
|
out_shape = [x.shape[0], self.out_channels] |
|
for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size, |
|
self.padding, self.stride, self.dilation): |
|
o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1 |
|
out_shape.append(o) |
|
empty = NewEmptyTensorOp.apply(x, out_shape) |
|
if self.training: |
|
|
|
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 |
|
return empty + dummy |
|
else: |
|
return empty |
|
|
|
return super().forward(x) |
|
|
|
|
|
@CONV_LAYERS.register_module('Conv3d', force=True) |
|
class Conv3d(nn.Conv3d): |
|
|
|
def forward(self, x): |
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)): |
|
out_shape = [x.shape[0], self.out_channels] |
|
for i, k, p, s, d in zip(x.shape[-3:], self.kernel_size, |
|
self.padding, self.stride, self.dilation): |
|
o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1 |
|
out_shape.append(o) |
|
empty = NewEmptyTensorOp.apply(x, out_shape) |
|
if self.training: |
|
|
|
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 |
|
return empty + dummy |
|
else: |
|
return empty |
|
|
|
return super().forward(x) |
|
|
|
|
|
@CONV_LAYERS.register_module() |
|
@CONV_LAYERS.register_module('deconv') |
|
@UPSAMPLE_LAYERS.register_module('deconv', force=True) |
|
class ConvTranspose2d(nn.ConvTranspose2d): |
|
|
|
def forward(self, x): |
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)): |
|
out_shape = [x.shape[0], self.out_channels] |
|
for i, k, p, s, d, op in zip(x.shape[-2:], self.kernel_size, |
|
self.padding, self.stride, |
|
self.dilation, self.output_padding): |
|
out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op) |
|
empty = NewEmptyTensorOp.apply(x, out_shape) |
|
if self.training: |
|
|
|
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 |
|
return empty + dummy |
|
else: |
|
return empty |
|
|
|
return super().forward(x) |
|
|
|
|
|
@CONV_LAYERS.register_module() |
|
@CONV_LAYERS.register_module('deconv3d') |
|
@UPSAMPLE_LAYERS.register_module('deconv3d', force=True) |
|
class ConvTranspose3d(nn.ConvTranspose3d): |
|
|
|
def forward(self, x): |
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)): |
|
out_shape = [x.shape[0], self.out_channels] |
|
for i, k, p, s, d, op in zip(x.shape[-3:], self.kernel_size, |
|
self.padding, self.stride, |
|
self.dilation, self.output_padding): |
|
out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op) |
|
empty = NewEmptyTensorOp.apply(x, out_shape) |
|
if self.training: |
|
|
|
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 |
|
return empty + dummy |
|
else: |
|
return empty |
|
|
|
return super().forward(x) |
|
|
|
|
|
class MaxPool2d(nn.MaxPool2d): |
|
|
|
def forward(self, x): |
|
|
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)): |
|
out_shape = list(x.shape[:2]) |
|
for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size), |
|
_pair(self.padding), _pair(self.stride), |
|
_pair(self.dilation)): |
|
o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1 |
|
o = math.ceil(o) if self.ceil_mode else math.floor(o) |
|
out_shape.append(o) |
|
empty = NewEmptyTensorOp.apply(x, out_shape) |
|
return empty |
|
|
|
return super().forward(x) |
|
|
|
|
|
class MaxPool3d(nn.MaxPool3d): |
|
|
|
def forward(self, x): |
|
|
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)): |
|
out_shape = list(x.shape[:2]) |
|
for i, k, p, s, d in zip(x.shape[-3:], _triple(self.kernel_size), |
|
_triple(self.padding), |
|
_triple(self.stride), |
|
_triple(self.dilation)): |
|
o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1 |
|
o = math.ceil(o) if self.ceil_mode else math.floor(o) |
|
out_shape.append(o) |
|
empty = NewEmptyTensorOp.apply(x, out_shape) |
|
return empty |
|
|
|
return super().forward(x) |
|
|
|
|
|
class Linear(torch.nn.Linear): |
|
|
|
def forward(self, x): |
|
|
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 5)): |
|
out_shape = [x.shape[0], self.out_features] |
|
empty = NewEmptyTensorOp.apply(x, out_shape) |
|
if self.training: |
|
|
|
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 |
|
return empty + dummy |
|
else: |
|
return empty |
|
|
|
return super().forward(x) |
|
|