|
|
|
import io |
|
import os |
|
import os.path as osp |
|
import pkgutil |
|
import re |
|
import time |
|
import warnings |
|
from collections import OrderedDict |
|
from importlib import import_module |
|
from tempfile import TemporaryDirectory |
|
|
|
import torch |
|
import torchvision |
|
from torch.optim import Optimizer |
|
from torch.utils import model_zoo |
|
|
|
import annotator.mmpkg.mmcv as mmcv |
|
from ..fileio import FileClient |
|
from ..fileio import load as load_file |
|
from ..parallel import is_module_wrapper |
|
from ..utils import mkdir_or_exist |
|
from .dist_utils import get_dist_info |
|
|
|
ENV_MMCV_HOME = 'MMCV_HOME' |
|
ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' |
|
DEFAULT_CACHE_DIR = '~/.cache' |
|
|
|
|
|
def _get_mmcv_home(): |
|
mmcv_home = os.path.expanduser( |
|
os.getenv( |
|
ENV_MMCV_HOME, |
|
os.path.join( |
|
os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) |
|
|
|
mkdir_or_exist(mmcv_home) |
|
return mmcv_home |
|
|
|
|
|
def load_state_dict(module, state_dict, strict=False, logger=None): |
|
"""Load state_dict to a module. |
|
|
|
This method is modified from :meth:`torch.nn.Module.load_state_dict`. |
|
Default value for ``strict`` is set to ``False`` and the message for |
|
param mismatch will be shown even if strict is False. |
|
|
|
Args: |
|
module (Module): Module that receives the state_dict. |
|
state_dict (OrderedDict): Weights. |
|
strict (bool): whether to strictly enforce that the keys |
|
in :attr:`state_dict` match the keys returned by this module's |
|
:meth:`~torch.nn.Module.state_dict` function. Default: ``False``. |
|
logger (:obj:`logging.Logger`, optional): Logger to log the error |
|
message. If not specified, print function will be used. |
|
""" |
|
unexpected_keys = [] |
|
all_missing_keys = [] |
|
err_msg = [] |
|
|
|
metadata = getattr(state_dict, '_metadata', None) |
|
state_dict = state_dict.copy() |
|
if metadata is not None: |
|
state_dict._metadata = metadata |
|
|
|
|
|
def load(module, prefix=''): |
|
|
|
|
|
if is_module_wrapper(module): |
|
module = module.module |
|
local_metadata = {} if metadata is None else metadata.get( |
|
prefix[:-1], {}) |
|
module._load_from_state_dict(state_dict, prefix, local_metadata, True, |
|
all_missing_keys, unexpected_keys, |
|
err_msg) |
|
for name, child in module._modules.items(): |
|
if child is not None: |
|
load(child, prefix + name + '.') |
|
|
|
load(module) |
|
load = None |
|
|
|
|
|
missing_keys = [ |
|
key for key in all_missing_keys if 'num_batches_tracked' not in key |
|
] |
|
|
|
if unexpected_keys: |
|
err_msg.append('unexpected key in source ' |
|
f'state_dict: {", ".join(unexpected_keys)}\n') |
|
if missing_keys: |
|
err_msg.append( |
|
f'missing keys in source state_dict: {", ".join(missing_keys)}\n') |
|
|
|
rank, _ = get_dist_info() |
|
if len(err_msg) > 0 and rank == 0: |
|
err_msg.insert( |
|
0, 'The model and loaded state dict do not match exactly\n') |
|
err_msg = '\n'.join(err_msg) |
|
if strict: |
|
raise RuntimeError(err_msg) |
|
elif logger is not None: |
|
logger.warning(err_msg) |
|
else: |
|
print(err_msg) |
|
|
|
|
|
def get_torchvision_models(): |
|
model_urls = dict() |
|
for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): |
|
if ispkg: |
|
continue |
|
_zoo = import_module(f'torchvision.models.{name}') |
|
if hasattr(_zoo, 'model_urls'): |
|
_urls = getattr(_zoo, 'model_urls') |
|
model_urls.update(_urls) |
|
return model_urls |
|
|
|
|
|
def get_external_models(): |
|
mmcv_home = _get_mmcv_home() |
|
default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') |
|
default_urls = load_file(default_json_path) |
|
assert isinstance(default_urls, dict) |
|
external_json_path = osp.join(mmcv_home, 'open_mmlab.json') |
|
if osp.exists(external_json_path): |
|
external_urls = load_file(external_json_path) |
|
assert isinstance(external_urls, dict) |
|
default_urls.update(external_urls) |
|
|
|
return default_urls |
|
|
|
|
|
def get_mmcls_models(): |
|
mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') |
|
mmcls_urls = load_file(mmcls_json_path) |
|
|
|
return mmcls_urls |
|
|
|
|
|
def get_deprecated_model_names(): |
|
deprecate_json_path = osp.join(mmcv.__path__[0], |
|
'model_zoo/deprecated.json') |
|
deprecate_urls = load_file(deprecate_json_path) |
|
assert isinstance(deprecate_urls, dict) |
|
|
|
return deprecate_urls |
|
|
|
|
|
def _process_mmcls_checkpoint(checkpoint): |
|
state_dict = checkpoint['state_dict'] |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
if k.startswith('backbone.'): |
|
new_state_dict[k[9:]] = v |
|
new_checkpoint = dict(state_dict=new_state_dict) |
|
|
|
return new_checkpoint |
|
|
|
|
|
class CheckpointLoader: |
|
"""A general checkpoint loader to manage all schemes.""" |
|
|
|
_schemes = {} |
|
|
|
@classmethod |
|
def _register_scheme(cls, prefixes, loader, force=False): |
|
if isinstance(prefixes, str): |
|
prefixes = [prefixes] |
|
else: |
|
assert isinstance(prefixes, (list, tuple)) |
|
for prefix in prefixes: |
|
if (prefix not in cls._schemes) or force: |
|
cls._schemes[prefix] = loader |
|
else: |
|
raise KeyError( |
|
f'{prefix} is already registered as a loader backend, ' |
|
'add "force=True" if you want to override it') |
|
|
|
cls._schemes = OrderedDict( |
|
sorted(cls._schemes.items(), key=lambda t: t[0], reverse=True)) |
|
|
|
@classmethod |
|
def register_scheme(cls, prefixes, loader=None, force=False): |
|
"""Register a loader to CheckpointLoader. |
|
|
|
This method can be used as a normal class method or a decorator. |
|
|
|
Args: |
|
prefixes (str or list[str] or tuple[str]): |
|
The prefix of the registered loader. |
|
loader (function, optional): The loader function to be registered. |
|
When this method is used as a decorator, loader is None. |
|
Defaults to None. |
|
force (bool, optional): Whether to override the loader |
|
if the prefix has already been registered. Defaults to False. |
|
""" |
|
|
|
if loader is not None: |
|
cls._register_scheme(prefixes, loader, force=force) |
|
return |
|
|
|
def _register(loader_cls): |
|
cls._register_scheme(prefixes, loader_cls, force=force) |
|
return loader_cls |
|
|
|
return _register |
|
|
|
@classmethod |
|
def _get_checkpoint_loader(cls, path): |
|
"""Finds a loader that supports the given path. Falls back to the local |
|
loader if no other loader is found. |
|
|
|
Args: |
|
path (str): checkpoint path |
|
|
|
Returns: |
|
loader (function): checkpoint loader |
|
""" |
|
|
|
for p in cls._schemes: |
|
if path.startswith(p): |
|
return cls._schemes[p] |
|
|
|
@classmethod |
|
def load_checkpoint(cls, filename, map_location=None, logger=None): |
|
"""load checkpoint through URL scheme path. |
|
|
|
Args: |
|
filename (str): checkpoint file name with given prefix |
|
map_location (str, optional): Same as :func:`torch.load`. |
|
Default: None |
|
logger (:mod:`logging.Logger`, optional): The logger for message. |
|
Default: None |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
|
|
checkpoint_loader = cls._get_checkpoint_loader(filename) |
|
class_name = checkpoint_loader.__name__ |
|
mmcv.print_log( |
|
f'load checkpoint from {class_name[10:]} path: {filename}', logger) |
|
return checkpoint_loader(filename, map_location) |
|
|
|
|
|
@CheckpointLoader.register_scheme(prefixes='') |
|
def load_from_local(filename, map_location): |
|
"""load checkpoint by local file path. |
|
|
|
Args: |
|
filename (str): local checkpoint file path |
|
map_location (str, optional): Same as :func:`torch.load`. |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
|
|
if not osp.isfile(filename): |
|
raise IOError(f'{filename} is not a checkpoint file') |
|
checkpoint = torch.load(filename, map_location=map_location) |
|
return checkpoint |
|
|
|
|
|
@CheckpointLoader.register_scheme(prefixes=('http://', 'https://')) |
|
def load_from_http(filename, map_location=None, model_dir=None): |
|
"""load checkpoint through HTTP or HTTPS scheme path. In distributed |
|
setting, this function only download checkpoint at local rank 0. |
|
|
|
Args: |
|
filename (str): checkpoint file path with modelzoo or |
|
torchvision prefix |
|
map_location (str, optional): Same as :func:`torch.load`. |
|
model_dir (string, optional): directory in which to save the object, |
|
Default: None |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
rank, world_size = get_dist_info() |
|
rank = int(os.environ.get('LOCAL_RANK', rank)) |
|
if rank == 0: |
|
checkpoint = model_zoo.load_url( |
|
filename, model_dir=model_dir, map_location=map_location) |
|
if world_size > 1: |
|
torch.distributed.barrier() |
|
if rank > 0: |
|
checkpoint = model_zoo.load_url( |
|
filename, model_dir=model_dir, map_location=map_location) |
|
return checkpoint |
|
|
|
|
|
@CheckpointLoader.register_scheme(prefixes='pavi://') |
|
def load_from_pavi(filename, map_location=None): |
|
"""load checkpoint through the file path prefixed with pavi. In distributed |
|
setting, this function download ckpt at all ranks to different temporary |
|
directories. |
|
|
|
Args: |
|
filename (str): checkpoint file path with pavi prefix |
|
map_location (str, optional): Same as :func:`torch.load`. |
|
Default: None |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
assert filename.startswith('pavi://'), \ |
|
f'Expected filename startswith `pavi://`, but get {filename}' |
|
model_path = filename[7:] |
|
|
|
try: |
|
from pavi import modelcloud |
|
except ImportError: |
|
raise ImportError( |
|
'Please install pavi to load checkpoint from modelcloud.') |
|
|
|
model = modelcloud.get(model_path) |
|
with TemporaryDirectory() as tmp_dir: |
|
downloaded_file = osp.join(tmp_dir, model.name) |
|
model.download(downloaded_file) |
|
checkpoint = torch.load(downloaded_file, map_location=map_location) |
|
return checkpoint |
|
|
|
|
|
@CheckpointLoader.register_scheme(prefixes='s3://') |
|
def load_from_ceph(filename, map_location=None, backend='petrel'): |
|
"""load checkpoint through the file path prefixed with s3. In distributed |
|
setting, this function download ckpt at all ranks to different temporary |
|
directories. |
|
|
|
Args: |
|
filename (str): checkpoint file path with s3 prefix |
|
map_location (str, optional): Same as :func:`torch.load`. |
|
backend (str, optional): The storage backend type. Options are 'ceph', |
|
'petrel'. Default: 'petrel'. |
|
|
|
.. warning:: |
|
:class:`mmcv.fileio.file_client.CephBackend` will be deprecated, |
|
please use :class:`mmcv.fileio.file_client.PetrelBackend` instead. |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
allowed_backends = ['ceph', 'petrel'] |
|
if backend not in allowed_backends: |
|
raise ValueError(f'Load from Backend {backend} is not supported.') |
|
|
|
if backend == 'ceph': |
|
warnings.warn( |
|
'CephBackend will be deprecated, please use PetrelBackend instead') |
|
|
|
|
|
|
|
|
|
try: |
|
file_client = FileClient(backend=backend) |
|
except ImportError: |
|
allowed_backends.remove(backend) |
|
file_client = FileClient(backend=allowed_backends[0]) |
|
|
|
with io.BytesIO(file_client.get(filename)) as buffer: |
|
checkpoint = torch.load(buffer, map_location=map_location) |
|
return checkpoint |
|
|
|
|
|
@CheckpointLoader.register_scheme(prefixes=('modelzoo://', 'torchvision://')) |
|
def load_from_torchvision(filename, map_location=None): |
|
"""load checkpoint through the file path prefixed with modelzoo or |
|
torchvision. |
|
|
|
Args: |
|
filename (str): checkpoint file path with modelzoo or |
|
torchvision prefix |
|
map_location (str, optional): Same as :func:`torch.load`. |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
model_urls = get_torchvision_models() |
|
if filename.startswith('modelzoo://'): |
|
warnings.warn('The URL scheme of "modelzoo://" is deprecated, please ' |
|
'use "torchvision://" instead') |
|
model_name = filename[11:] |
|
else: |
|
model_name = filename[14:] |
|
return load_from_http(model_urls[model_name], map_location=map_location) |
|
|
|
|
|
@CheckpointLoader.register_scheme(prefixes=('open-mmlab://', 'openmmlab://')) |
|
def load_from_openmmlab(filename, map_location=None): |
|
"""load checkpoint through the file path prefixed with open-mmlab or |
|
openmmlab. |
|
|
|
Args: |
|
filename (str): checkpoint file path with open-mmlab or |
|
openmmlab prefix |
|
map_location (str, optional): Same as :func:`torch.load`. |
|
Default: None |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
|
|
model_urls = get_external_models() |
|
prefix_str = 'open-mmlab://' |
|
if filename.startswith(prefix_str): |
|
model_name = filename[13:] |
|
else: |
|
model_name = filename[12:] |
|
prefix_str = 'openmmlab://' |
|
|
|
deprecated_urls = get_deprecated_model_names() |
|
if model_name in deprecated_urls: |
|
warnings.warn(f'{prefix_str}{model_name} is deprecated in favor ' |
|
f'of {prefix_str}{deprecated_urls[model_name]}') |
|
model_name = deprecated_urls[model_name] |
|
model_url = model_urls[model_name] |
|
|
|
if model_url.startswith(('http://', 'https://')): |
|
checkpoint = load_from_http(model_url, map_location=map_location) |
|
else: |
|
filename = osp.join(_get_mmcv_home(), model_url) |
|
if not osp.isfile(filename): |
|
raise IOError(f'{filename} is not a checkpoint file') |
|
checkpoint = torch.load(filename, map_location=map_location) |
|
return checkpoint |
|
|
|
|
|
@CheckpointLoader.register_scheme(prefixes='mmcls://') |
|
def load_from_mmcls(filename, map_location=None): |
|
"""load checkpoint through the file path prefixed with mmcls. |
|
|
|
Args: |
|
filename (str): checkpoint file path with mmcls prefix |
|
map_location (str, optional): Same as :func:`torch.load`. |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
|
|
model_urls = get_mmcls_models() |
|
model_name = filename[8:] |
|
checkpoint = load_from_http( |
|
model_urls[model_name], map_location=map_location) |
|
checkpoint = _process_mmcls_checkpoint(checkpoint) |
|
return checkpoint |
|
|
|
|
|
def _load_checkpoint(filename, map_location=None, logger=None): |
|
"""Load checkpoint from somewhere (modelzoo, file, url). |
|
|
|
Args: |
|
filename (str): Accept local filepath, URL, ``torchvision://xxx``, |
|
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for |
|
details. |
|
map_location (str, optional): Same as :func:`torch.load`. |
|
Default: None. |
|
logger (:mod:`logging.Logger`, optional): The logger for error message. |
|
Default: None |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. It can be either an |
|
OrderedDict storing model weights or a dict containing other |
|
information, which depends on the checkpoint. |
|
""" |
|
return CheckpointLoader.load_checkpoint(filename, map_location, logger) |
|
|
|
|
|
def _load_checkpoint_with_prefix(prefix, filename, map_location=None): |
|
"""Load partial pretrained model with specific prefix. |
|
|
|
Args: |
|
prefix (str): The prefix of sub-module. |
|
filename (str): Accept local filepath, URL, ``torchvision://xxx``, |
|
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for |
|
details. |
|
map_location (str | None): Same as :func:`torch.load`. Default: None. |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
|
|
checkpoint = _load_checkpoint(filename, map_location=map_location) |
|
|
|
if 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
else: |
|
state_dict = checkpoint |
|
if not prefix.endswith('.'): |
|
prefix += '.' |
|
prefix_len = len(prefix) |
|
|
|
state_dict = { |
|
k[prefix_len:]: v |
|
for k, v in state_dict.items() if k.startswith(prefix) |
|
} |
|
|
|
assert state_dict, f'{prefix} is not in the pretrained model' |
|
return state_dict |
|
|
|
|
|
def load_checkpoint(model, |
|
filename, |
|
map_location=None, |
|
strict=False, |
|
logger=None, |
|
revise_keys=[(r'^module\.', '')]): |
|
"""Load checkpoint from a file or URI. |
|
|
|
Args: |
|
model (Module): Module to load checkpoint. |
|
filename (str): Accept local filepath, URL, ``torchvision://xxx``, |
|
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for |
|
details. |
|
map_location (str): Same as :func:`torch.load`. |
|
strict (bool): Whether to allow different params for the model and |
|
checkpoint. |
|
logger (:mod:`logging.Logger` or None): The logger for error message. |
|
revise_keys (list): A list of customized keywords to modify the |
|
state_dict in checkpoint. Each item is a (pattern, replacement) |
|
pair of the regular expression operations. Default: strip |
|
the prefix 'module.' by [(r'^module\\.', '')]. |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
checkpoint = _load_checkpoint(filename, map_location, logger) |
|
|
|
if not isinstance(checkpoint, dict): |
|
raise RuntimeError( |
|
f'No state_dict found in checkpoint file {filename}') |
|
|
|
if 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
else: |
|
state_dict = checkpoint |
|
|
|
|
|
metadata = getattr(state_dict, '_metadata', OrderedDict()) |
|
for p, r in revise_keys: |
|
state_dict = OrderedDict( |
|
{re.sub(p, r, k): v |
|
for k, v in state_dict.items()}) |
|
|
|
state_dict._metadata = metadata |
|
|
|
|
|
load_state_dict(model, state_dict, strict, logger) |
|
return checkpoint |
|
|
|
|
|
def weights_to_cpu(state_dict): |
|
"""Copy a model state_dict to cpu. |
|
|
|
Args: |
|
state_dict (OrderedDict): Model weights on GPU. |
|
|
|
Returns: |
|
OrderedDict: Model weights on GPU. |
|
""" |
|
state_dict_cpu = OrderedDict() |
|
for key, val in state_dict.items(): |
|
state_dict_cpu[key] = val.cpu() |
|
|
|
state_dict_cpu._metadata = getattr(state_dict, '_metadata', OrderedDict()) |
|
return state_dict_cpu |
|
|
|
|
|
def _save_to_state_dict(module, destination, prefix, keep_vars): |
|
"""Saves module state to `destination` dictionary. |
|
|
|
This method is modified from :meth:`torch.nn.Module._save_to_state_dict`. |
|
|
|
Args: |
|
module (nn.Module): The module to generate state_dict. |
|
destination (dict): A dict where state will be stored. |
|
prefix (str): The prefix for parameters and buffers used in this |
|
module. |
|
""" |
|
for name, param in module._parameters.items(): |
|
if param is not None: |
|
destination[prefix + name] = param if keep_vars else param.detach() |
|
for name, buf in module._buffers.items(): |
|
|
|
if buf is not None: |
|
destination[prefix + name] = buf if keep_vars else buf.detach() |
|
|
|
|
|
def get_state_dict(module, destination=None, prefix='', keep_vars=False): |
|
"""Returns a dictionary containing a whole state of the module. |
|
|
|
Both parameters and persistent buffers (e.g. running averages) are |
|
included. Keys are corresponding parameter and buffer names. |
|
|
|
This method is modified from :meth:`torch.nn.Module.state_dict` to |
|
recursively check parallel module in case that the model has a complicated |
|
structure, e.g., nn.Module(nn.Module(DDP)). |
|
|
|
Args: |
|
module (nn.Module): The module to generate state_dict. |
|
destination (OrderedDict): Returned dict for the state of the |
|
module. |
|
prefix (str): Prefix of the key. |
|
keep_vars (bool): Whether to keep the variable property of the |
|
parameters. Default: False. |
|
|
|
Returns: |
|
dict: A dictionary containing a whole state of the module. |
|
""" |
|
|
|
|
|
if is_module_wrapper(module): |
|
module = module.module |
|
|
|
|
|
if destination is None: |
|
destination = OrderedDict() |
|
destination._metadata = OrderedDict() |
|
destination._metadata[prefix[:-1]] = local_metadata = dict( |
|
version=module._version) |
|
_save_to_state_dict(module, destination, prefix, keep_vars) |
|
for name, child in module._modules.items(): |
|
if child is not None: |
|
get_state_dict( |
|
child, destination, prefix + name + '.', keep_vars=keep_vars) |
|
for hook in module._state_dict_hooks.values(): |
|
hook_result = hook(module, destination, prefix, local_metadata) |
|
if hook_result is not None: |
|
destination = hook_result |
|
return destination |
|
|
|
|
|
def save_checkpoint(model, |
|
filename, |
|
optimizer=None, |
|
meta=None, |
|
file_client_args=None): |
|
"""Save checkpoint to file. |
|
|
|
The checkpoint will have 3 fields: ``meta``, ``state_dict`` and |
|
``optimizer``. By default ``meta`` will contain version and time info. |
|
|
|
Args: |
|
model (Module): Module whose params are to be saved. |
|
filename (str): Checkpoint filename. |
|
optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. |
|
meta (dict, optional): Metadata to be saved in checkpoint. |
|
file_client_args (dict, optional): Arguments to instantiate a |
|
FileClient. See :class:`mmcv.fileio.FileClient` for details. |
|
Default: None. |
|
`New in version 1.3.16.` |
|
""" |
|
if meta is None: |
|
meta = {} |
|
elif not isinstance(meta, dict): |
|
raise TypeError(f'meta must be a dict or None, but got {type(meta)}') |
|
meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) |
|
|
|
if is_module_wrapper(model): |
|
model = model.module |
|
|
|
if hasattr(model, 'CLASSES') and model.CLASSES is not None: |
|
|
|
meta.update(CLASSES=model.CLASSES) |
|
|
|
checkpoint = { |
|
'meta': meta, |
|
'state_dict': weights_to_cpu(get_state_dict(model)) |
|
} |
|
|
|
if isinstance(optimizer, Optimizer): |
|
checkpoint['optimizer'] = optimizer.state_dict() |
|
elif isinstance(optimizer, dict): |
|
checkpoint['optimizer'] = {} |
|
for name, optim in optimizer.items(): |
|
checkpoint['optimizer'][name] = optim.state_dict() |
|
|
|
if filename.startswith('pavi://'): |
|
if file_client_args is not None: |
|
raise ValueError( |
|
'file_client_args should be "None" if filename starts with' |
|
f'"pavi://", but got {file_client_args}') |
|
try: |
|
from pavi import modelcloud |
|
from pavi import exception |
|
except ImportError: |
|
raise ImportError( |
|
'Please install pavi to load checkpoint from modelcloud.') |
|
model_path = filename[7:] |
|
root = modelcloud.Folder() |
|
model_dir, model_name = osp.split(model_path) |
|
try: |
|
model = modelcloud.get(model_dir) |
|
except exception.NodeNotFoundError: |
|
model = root.create_training_model(model_dir) |
|
with TemporaryDirectory() as tmp_dir: |
|
checkpoint_file = osp.join(tmp_dir, model_name) |
|
with open(checkpoint_file, 'wb') as f: |
|
torch.save(checkpoint, f) |
|
f.flush() |
|
model.create_file(checkpoint_file, name=model_name) |
|
else: |
|
file_client = FileClient.infer_client(file_client_args, filename) |
|
with io.BytesIO() as f: |
|
torch.save(checkpoint, f) |
|
file_client.put(f.getvalue(), filename) |
|
|