|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
|
|
from ..utils import ext_loader |
|
|
|
ext_module = ext_loader.load_ext( |
|
'_ext', ['border_align_forward', 'border_align_backward']) |
|
|
|
|
|
class BorderAlignFunction(Function): |
|
|
|
@staticmethod |
|
def symbolic(g, input, boxes, pool_size): |
|
return g.op( |
|
'mmcv::MMCVBorderAlign', input, boxes, pool_size_i=pool_size) |
|
|
|
@staticmethod |
|
def forward(ctx, input, boxes, pool_size): |
|
ctx.pool_size = pool_size |
|
ctx.input_shape = input.size() |
|
|
|
assert boxes.ndim == 3, 'boxes must be with shape [B, H*W, 4]' |
|
assert boxes.size(2) == 4, \ |
|
'the last dimension of boxes must be (x1, y1, x2, y2)' |
|
assert input.size(1) % 4 == 0, \ |
|
'the channel for input feature must be divisible by factor 4' |
|
|
|
|
|
output_shape = (input.size(0), input.size(1) // 4, boxes.size(1), 4) |
|
output = input.new_zeros(output_shape) |
|
|
|
argmax_idx = input.new_zeros(output_shape).to(torch.int) |
|
|
|
ext_module.border_align_forward( |
|
input, boxes, output, argmax_idx, pool_size=ctx.pool_size) |
|
|
|
ctx.save_for_backward(boxes, argmax_idx) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
boxes, argmax_idx = ctx.saved_tensors |
|
grad_input = grad_output.new_zeros(ctx.input_shape) |
|
|
|
grad_output = grad_output.contiguous() |
|
ext_module.border_align_backward( |
|
grad_output, |
|
boxes, |
|
argmax_idx, |
|
grad_input, |
|
pool_size=ctx.pool_size) |
|
return grad_input, None, None |
|
|
|
|
|
border_align = BorderAlignFunction.apply |
|
|
|
|
|
class BorderAlign(nn.Module): |
|
r"""Border align pooling layer. |
|
|
|
Applies border_align over the input feature based on predicted bboxes. |
|
The details were described in the paper |
|
`BorderDet: Border Feature for Dense Object Detection |
|
<https://arxiv.org/abs/2007.11056>`_. |
|
|
|
For each border line (e.g. top, left, bottom or right) of each box, |
|
border_align does the following: |
|
1. uniformly samples `pool_size`+1 positions on this line, involving \ |
|
the start and end points. |
|
2. the corresponding features on these points are computed by \ |
|
bilinear interpolation. |
|
3. max pooling over all the `pool_size`+1 positions are used for \ |
|
computing pooled feature. |
|
|
|
Args: |
|
pool_size (int): number of positions sampled over the boxes' borders |
|
(e.g. top, bottom, left, right). |
|
|
|
""" |
|
|
|
def __init__(self, pool_size): |
|
super(BorderAlign, self).__init__() |
|
self.pool_size = pool_size |
|
|
|
def forward(self, input, boxes): |
|
""" |
|
Args: |
|
input: Features with shape [N,4C,H,W]. Channels ranged in [0,C), |
|
[C,2C), [2C,3C), [3C,4C) represent the top, left, bottom, |
|
right features respectively. |
|
boxes: Boxes with shape [N,H*W,4]. Coordinate format (x1,y1,x2,y2). |
|
|
|
Returns: |
|
Tensor: Pooled features with shape [N,C,H*W,4]. The order is |
|
(top,left,bottom,right) for the last dimension. |
|
""" |
|
return border_align(input, boxes, self.pool_size) |
|
|
|
def __repr__(self): |
|
s = self.__class__.__name__ |
|
s += f'(pool_size={self.pool_size})' |
|
return s |
|
|