|
|
|
import copy |
|
import math |
|
import warnings |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
|
|
from annotator.mmpkg.mmcv.utils import Registry, build_from_cfg, get_logger, print_log |
|
|
|
INITIALIZERS = Registry('initializer') |
|
|
|
|
|
def update_init_info(module, init_info): |
|
"""Update the `_params_init_info` in the module if the value of parameters |
|
are changed. |
|
|
|
Args: |
|
module (obj:`nn.Module`): The module of PyTorch with a user-defined |
|
attribute `_params_init_info` which records the initialization |
|
information. |
|
init_info (str): The string that describes the initialization. |
|
""" |
|
assert hasattr( |
|
module, |
|
'_params_init_info'), f'Can not find `_params_init_info` in {module}' |
|
for name, param in module.named_parameters(): |
|
|
|
assert param in module._params_init_info, ( |
|
f'Find a new :obj:`Parameter` ' |
|
f'named `{name}` during executing the ' |
|
f'`init_weights` of ' |
|
f'`{module.__class__.__name__}`. ' |
|
f'Please do not add or ' |
|
f'replace parameters during executing ' |
|
f'the `init_weights`. ') |
|
|
|
|
|
|
|
mean_value = param.data.mean() |
|
if module._params_init_info[param]['tmp_mean_value'] != mean_value: |
|
module._params_init_info[param]['init_info'] = init_info |
|
module._params_init_info[param]['tmp_mean_value'] = mean_value |
|
|
|
|
|
def constant_init(module, val, bias=0): |
|
if hasattr(module, 'weight') and module.weight is not None: |
|
nn.init.constant_(module.weight, val) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
nn.init.constant_(module.bias, bias) |
|
|
|
|
|
def xavier_init(module, gain=1, bias=0, distribution='normal'): |
|
assert distribution in ['uniform', 'normal'] |
|
if hasattr(module, 'weight') and module.weight is not None: |
|
if distribution == 'uniform': |
|
nn.init.xavier_uniform_(module.weight, gain=gain) |
|
else: |
|
nn.init.xavier_normal_(module.weight, gain=gain) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
nn.init.constant_(module.bias, bias) |
|
|
|
|
|
def normal_init(module, mean=0, std=1, bias=0): |
|
if hasattr(module, 'weight') and module.weight is not None: |
|
nn.init.normal_(module.weight, mean, std) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
nn.init.constant_(module.bias, bias) |
|
|
|
|
|
def trunc_normal_init(module: nn.Module, |
|
mean: float = 0, |
|
std: float = 1, |
|
a: float = -2, |
|
b: float = 2, |
|
bias: float = 0) -> None: |
|
if hasattr(module, 'weight') and module.weight is not None: |
|
trunc_normal_(module.weight, mean, std, a, b) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
nn.init.constant_(module.bias, bias) |
|
|
|
|
|
def uniform_init(module, a=0, b=1, bias=0): |
|
if hasattr(module, 'weight') and module.weight is not None: |
|
nn.init.uniform_(module.weight, a, b) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
nn.init.constant_(module.bias, bias) |
|
|
|
|
|
def kaiming_init(module, |
|
a=0, |
|
mode='fan_out', |
|
nonlinearity='relu', |
|
bias=0, |
|
distribution='normal'): |
|
assert distribution in ['uniform', 'normal'] |
|
if hasattr(module, 'weight') and module.weight is not None: |
|
if distribution == 'uniform': |
|
nn.init.kaiming_uniform_( |
|
module.weight, a=a, mode=mode, nonlinearity=nonlinearity) |
|
else: |
|
nn.init.kaiming_normal_( |
|
module.weight, a=a, mode=mode, nonlinearity=nonlinearity) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
nn.init.constant_(module.bias, bias) |
|
|
|
|
|
def caffe2_xavier_init(module, bias=0): |
|
|
|
|
|
kaiming_init( |
|
module, |
|
a=1, |
|
mode='fan_in', |
|
nonlinearity='leaky_relu', |
|
bias=bias, |
|
distribution='uniform') |
|
|
|
|
|
def bias_init_with_prob(prior_prob): |
|
"""initialize conv/fc bias value according to a given probability value.""" |
|
bias_init = float(-np.log((1 - prior_prob) / prior_prob)) |
|
return bias_init |
|
|
|
|
|
def _get_bases_name(m): |
|
return [b.__name__ for b in m.__class__.__bases__] |
|
|
|
|
|
class BaseInit(object): |
|
|
|
def __init__(self, *, bias=0, bias_prob=None, layer=None): |
|
self.wholemodule = False |
|
if not isinstance(bias, (int, float)): |
|
raise TypeError(f'bias must be a number, but got a {type(bias)}') |
|
|
|
if bias_prob is not None: |
|
if not isinstance(bias_prob, float): |
|
raise TypeError(f'bias_prob type must be float, \ |
|
but got {type(bias_prob)}') |
|
|
|
if layer is not None: |
|
if not isinstance(layer, (str, list)): |
|
raise TypeError(f'layer must be a str or a list of str, \ |
|
but got a {type(layer)}') |
|
else: |
|
layer = [] |
|
|
|
if bias_prob is not None: |
|
self.bias = bias_init_with_prob(bias_prob) |
|
else: |
|
self.bias = bias |
|
self.layer = [layer] if isinstance(layer, str) else layer |
|
|
|
def _get_init_info(self): |
|
info = f'{self.__class__.__name__}, bias={self.bias}' |
|
return info |
|
|
|
|
|
@INITIALIZERS.register_module(name='Constant') |
|
class ConstantInit(BaseInit): |
|
"""Initialize module parameters with constant values. |
|
|
|
Args: |
|
val (int | float): the value to fill the weights in the module with |
|
bias (int | float): the value to fill the bias. Defaults to 0. |
|
bias_prob (float, optional): the probability for bias initialization. |
|
Defaults to None. |
|
layer (str | list[str], optional): the layer will be initialized. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, val, **kwargs): |
|
super().__init__(**kwargs) |
|
self.val = val |
|
|
|
def __call__(self, module): |
|
|
|
def init(m): |
|
if self.wholemodule: |
|
constant_init(m, self.val, self.bias) |
|
else: |
|
layername = m.__class__.__name__ |
|
basesname = _get_bases_name(m) |
|
if len(set(self.layer) & set([layername] + basesname)): |
|
constant_init(m, self.val, self.bias) |
|
|
|
module.apply(init) |
|
if hasattr(module, '_params_init_info'): |
|
update_init_info(module, init_info=self._get_init_info()) |
|
|
|
def _get_init_info(self): |
|
info = f'{self.__class__.__name__}: val={self.val}, bias={self.bias}' |
|
return info |
|
|
|
|
|
@INITIALIZERS.register_module(name='Xavier') |
|
class XavierInit(BaseInit): |
|
r"""Initialize module parameters with values according to the method |
|
described in `Understanding the difficulty of training deep feedforward |
|
neural networks - Glorot, X. & Bengio, Y. (2010). |
|
<http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_ |
|
|
|
Args: |
|
gain (int | float): an optional scaling factor. Defaults to 1. |
|
bias (int | float): the value to fill the bias. Defaults to 0. |
|
bias_prob (float, optional): the probability for bias initialization. |
|
Defaults to None. |
|
distribution (str): distribution either be ``'normal'`` |
|
or ``'uniform'``. Defaults to ``'normal'``. |
|
layer (str | list[str], optional): the layer will be initialized. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, gain=1, distribution='normal', **kwargs): |
|
super().__init__(**kwargs) |
|
self.gain = gain |
|
self.distribution = distribution |
|
|
|
def __call__(self, module): |
|
|
|
def init(m): |
|
if self.wholemodule: |
|
xavier_init(m, self.gain, self.bias, self.distribution) |
|
else: |
|
layername = m.__class__.__name__ |
|
basesname = _get_bases_name(m) |
|
if len(set(self.layer) & set([layername] + basesname)): |
|
xavier_init(m, self.gain, self.bias, self.distribution) |
|
|
|
module.apply(init) |
|
if hasattr(module, '_params_init_info'): |
|
update_init_info(module, init_info=self._get_init_info()) |
|
|
|
def _get_init_info(self): |
|
info = f'{self.__class__.__name__}: gain={self.gain}, ' \ |
|
f'distribution={self.distribution}, bias={self.bias}' |
|
return info |
|
|
|
|
|
@INITIALIZERS.register_module(name='Normal') |
|
class NormalInit(BaseInit): |
|
r"""Initialize module parameters with the values drawn from the normal |
|
distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`. |
|
|
|
Args: |
|
mean (int | float):the mean of the normal distribution. Defaults to 0. |
|
std (int | float): the standard deviation of the normal distribution. |
|
Defaults to 1. |
|
bias (int | float): the value to fill the bias. Defaults to 0. |
|
bias_prob (float, optional): the probability for bias initialization. |
|
Defaults to None. |
|
layer (str | list[str], optional): the layer will be initialized. |
|
Defaults to None. |
|
|
|
""" |
|
|
|
def __init__(self, mean=0, std=1, **kwargs): |
|
super().__init__(**kwargs) |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__(self, module): |
|
|
|
def init(m): |
|
if self.wholemodule: |
|
normal_init(m, self.mean, self.std, self.bias) |
|
else: |
|
layername = m.__class__.__name__ |
|
basesname = _get_bases_name(m) |
|
if len(set(self.layer) & set([layername] + basesname)): |
|
normal_init(m, self.mean, self.std, self.bias) |
|
|
|
module.apply(init) |
|
if hasattr(module, '_params_init_info'): |
|
update_init_info(module, init_info=self._get_init_info()) |
|
|
|
def _get_init_info(self): |
|
info = f'{self.__class__.__name__}: mean={self.mean},' \ |
|
f' std={self.std}, bias={self.bias}' |
|
return info |
|
|
|
|
|
@INITIALIZERS.register_module(name='TruncNormal') |
|
class TruncNormalInit(BaseInit): |
|
r"""Initialize module parameters with the values drawn from the normal |
|
distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values |
|
outside :math:`[a, b]`. |
|
|
|
Args: |
|
mean (float): the mean of the normal distribution. Defaults to 0. |
|
std (float): the standard deviation of the normal distribution. |
|
Defaults to 1. |
|
a (float): The minimum cutoff value. |
|
b ( float): The maximum cutoff value. |
|
bias (float): the value to fill the bias. Defaults to 0. |
|
bias_prob (float, optional): the probability for bias initialization. |
|
Defaults to None. |
|
layer (str | list[str], optional): the layer will be initialized. |
|
Defaults to None. |
|
|
|
""" |
|
|
|
def __init__(self, |
|
mean: float = 0, |
|
std: float = 1, |
|
a: float = -2, |
|
b: float = 2, |
|
**kwargs) -> None: |
|
super().__init__(**kwargs) |
|
self.mean = mean |
|
self.std = std |
|
self.a = a |
|
self.b = b |
|
|
|
def __call__(self, module: nn.Module) -> None: |
|
|
|
def init(m): |
|
if self.wholemodule: |
|
trunc_normal_init(m, self.mean, self.std, self.a, self.b, |
|
self.bias) |
|
else: |
|
layername = m.__class__.__name__ |
|
basesname = _get_bases_name(m) |
|
if len(set(self.layer) & set([layername] + basesname)): |
|
trunc_normal_init(m, self.mean, self.std, self.a, self.b, |
|
self.bias) |
|
|
|
module.apply(init) |
|
if hasattr(module, '_params_init_info'): |
|
update_init_info(module, init_info=self._get_init_info()) |
|
|
|
def _get_init_info(self): |
|
info = f'{self.__class__.__name__}: a={self.a}, b={self.b},' \ |
|
f' mean={self.mean}, std={self.std}, bias={self.bias}' |
|
return info |
|
|
|
|
|
@INITIALIZERS.register_module(name='Uniform') |
|
class UniformInit(BaseInit): |
|
r"""Initialize module parameters with values drawn from the uniform |
|
distribution :math:`\mathcal{U}(a, b)`. |
|
|
|
Args: |
|
a (int | float): the lower bound of the uniform distribution. |
|
Defaults to 0. |
|
b (int | float): the upper bound of the uniform distribution. |
|
Defaults to 1. |
|
bias (int | float): the value to fill the bias. Defaults to 0. |
|
bias_prob (float, optional): the probability for bias initialization. |
|
Defaults to None. |
|
layer (str | list[str], optional): the layer will be initialized. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, a=0, b=1, **kwargs): |
|
super().__init__(**kwargs) |
|
self.a = a |
|
self.b = b |
|
|
|
def __call__(self, module): |
|
|
|
def init(m): |
|
if self.wholemodule: |
|
uniform_init(m, self.a, self.b, self.bias) |
|
else: |
|
layername = m.__class__.__name__ |
|
basesname = _get_bases_name(m) |
|
if len(set(self.layer) & set([layername] + basesname)): |
|
uniform_init(m, self.a, self.b, self.bias) |
|
|
|
module.apply(init) |
|
if hasattr(module, '_params_init_info'): |
|
update_init_info(module, init_info=self._get_init_info()) |
|
|
|
def _get_init_info(self): |
|
info = f'{self.__class__.__name__}: a={self.a},' \ |
|
f' b={self.b}, bias={self.bias}' |
|
return info |
|
|
|
|
|
@INITIALIZERS.register_module(name='Kaiming') |
|
class KaimingInit(BaseInit): |
|
r"""Initialize module parameters with the values according to the method |
|
described in `Delving deep into rectifiers: Surpassing human-level |
|
performance on ImageNet classification - He, K. et al. (2015). |
|
<https://www.cv-foundation.org/openaccess/content_iccv_2015/ |
|
papers/He_Delving_Deep_into_ICCV_2015_paper.pdf>`_ |
|
|
|
Args: |
|
a (int | float): the negative slope of the rectifier used after this |
|
layer (only used with ``'leaky_relu'``). Defaults to 0. |
|
mode (str): either ``'fan_in'`` or ``'fan_out'``. Choosing |
|
``'fan_in'`` preserves the magnitude of the variance of the weights |
|
in the forward pass. Choosing ``'fan_out'`` preserves the |
|
magnitudes in the backwards pass. Defaults to ``'fan_out'``. |
|
nonlinearity (str): the non-linear function (`nn.functional` name), |
|
recommended to use only with ``'relu'`` or ``'leaky_relu'`` . |
|
Defaults to 'relu'. |
|
bias (int | float): the value to fill the bias. Defaults to 0. |
|
bias_prob (float, optional): the probability for bias initialization. |
|
Defaults to None. |
|
distribution (str): distribution either be ``'normal'`` or |
|
``'uniform'``. Defaults to ``'normal'``. |
|
layer (str | list[str], optional): the layer will be initialized. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
a=0, |
|
mode='fan_out', |
|
nonlinearity='relu', |
|
distribution='normal', |
|
**kwargs): |
|
super().__init__(**kwargs) |
|
self.a = a |
|
self.mode = mode |
|
self.nonlinearity = nonlinearity |
|
self.distribution = distribution |
|
|
|
def __call__(self, module): |
|
|
|
def init(m): |
|
if self.wholemodule: |
|
kaiming_init(m, self.a, self.mode, self.nonlinearity, |
|
self.bias, self.distribution) |
|
else: |
|
layername = m.__class__.__name__ |
|
basesname = _get_bases_name(m) |
|
if len(set(self.layer) & set([layername] + basesname)): |
|
kaiming_init(m, self.a, self.mode, self.nonlinearity, |
|
self.bias, self.distribution) |
|
|
|
module.apply(init) |
|
if hasattr(module, '_params_init_info'): |
|
update_init_info(module, init_info=self._get_init_info()) |
|
|
|
def _get_init_info(self): |
|
info = f'{self.__class__.__name__}: a={self.a}, mode={self.mode}, ' \ |
|
f'nonlinearity={self.nonlinearity}, ' \ |
|
f'distribution ={self.distribution}, bias={self.bias}' |
|
return info |
|
|
|
|
|
@INITIALIZERS.register_module(name='Caffe2Xavier') |
|
class Caffe2XavierInit(KaimingInit): |
|
|
|
|
|
def __init__(self, **kwargs): |
|
super().__init__( |
|
a=1, |
|
mode='fan_in', |
|
nonlinearity='leaky_relu', |
|
distribution='uniform', |
|
**kwargs) |
|
|
|
def __call__(self, module): |
|
super().__call__(module) |
|
|
|
|
|
@INITIALIZERS.register_module(name='Pretrained') |
|
class PretrainedInit(object): |
|
"""Initialize module by loading a pretrained model. |
|
|
|
Args: |
|
checkpoint (str): the checkpoint file of the pretrained model should |
|
be load. |
|
prefix (str, optional): the prefix of a sub-module in the pretrained |
|
model. it is for loading a part of the pretrained model to |
|
initialize. For example, if we would like to only load the |
|
backbone of a detector model, we can set ``prefix='backbone.'``. |
|
Defaults to None. |
|
map_location (str): map tensors into proper locations. |
|
""" |
|
|
|
def __init__(self, checkpoint, prefix=None, map_location=None): |
|
self.checkpoint = checkpoint |
|
self.prefix = prefix |
|
self.map_location = map_location |
|
|
|
def __call__(self, module): |
|
from annotator.mmpkg.mmcv.runner import (_load_checkpoint_with_prefix, load_checkpoint, |
|
load_state_dict) |
|
logger = get_logger('mmcv') |
|
if self.prefix is None: |
|
print_log(f'load model from: {self.checkpoint}', logger=logger) |
|
load_checkpoint( |
|
module, |
|
self.checkpoint, |
|
map_location=self.map_location, |
|
strict=False, |
|
logger=logger) |
|
else: |
|
print_log( |
|
f'load {self.prefix} in model from: {self.checkpoint}', |
|
logger=logger) |
|
state_dict = _load_checkpoint_with_prefix( |
|
self.prefix, self.checkpoint, map_location=self.map_location) |
|
load_state_dict(module, state_dict, strict=False, logger=logger) |
|
|
|
if hasattr(module, '_params_init_info'): |
|
update_init_info(module, init_info=self._get_init_info()) |
|
|
|
def _get_init_info(self): |
|
info = f'{self.__class__.__name__}: load from {self.checkpoint}' |
|
return info |
|
|
|
|
|
def _initialize(module, cfg, wholemodule=False): |
|
func = build_from_cfg(cfg, INITIALIZERS) |
|
|
|
|
|
|
|
func.wholemodule = wholemodule |
|
func(module) |
|
|
|
|
|
def _initialize_override(module, override, cfg): |
|
if not isinstance(override, (dict, list)): |
|
raise TypeError(f'override must be a dict or a list of dict, \ |
|
but got {type(override)}') |
|
|
|
override = [override] if isinstance(override, dict) else override |
|
|
|
for override_ in override: |
|
|
|
cp_override = copy.deepcopy(override_) |
|
name = cp_override.pop('name', None) |
|
if name is None: |
|
raise ValueError('`override` must contain the key "name",' |
|
f'but got {cp_override}') |
|
|
|
if not cp_override: |
|
cp_override.update(cfg) |
|
|
|
|
|
elif 'type' not in cp_override.keys(): |
|
raise ValueError( |
|
f'`override` need "type" key, but got {cp_override}') |
|
|
|
if hasattr(module, name): |
|
_initialize(getattr(module, name), cp_override, wholemodule=True) |
|
else: |
|
raise RuntimeError(f'module did not have attribute {name}, ' |
|
f'but init_cfg is {cp_override}.') |
|
|
|
|
|
def initialize(module, init_cfg): |
|
"""Initialize a module. |
|
|
|
Args: |
|
module (``torch.nn.Module``): the module will be initialized. |
|
init_cfg (dict | list[dict]): initialization configuration dict to |
|
define initializer. OpenMMLab has implemented 6 initializers |
|
including ``Constant``, ``Xavier``, ``Normal``, ``Uniform``, |
|
``Kaiming``, and ``Pretrained``. |
|
Example: |
|
>>> module = nn.Linear(2, 3, bias=True) |
|
>>> init_cfg = dict(type='Constant', layer='Linear', val =1 , bias =2) |
|
>>> initialize(module, init_cfg) |
|
|
|
>>> module = nn.Sequential(nn.Conv1d(3, 1, 3), nn.Linear(1,2)) |
|
>>> # define key ``'layer'`` for initializing layer with different |
|
>>> # configuration |
|
>>> init_cfg = [dict(type='Constant', layer='Conv1d', val=1), |
|
dict(type='Constant', layer='Linear', val=2)] |
|
>>> initialize(module, init_cfg) |
|
|
|
>>> # define key``'override'`` to initialize some specific part in |
|
>>> # module |
|
>>> class FooNet(nn.Module): |
|
>>> def __init__(self): |
|
>>> super().__init__() |
|
>>> self.feat = nn.Conv2d(3, 16, 3) |
|
>>> self.reg = nn.Conv2d(16, 10, 3) |
|
>>> self.cls = nn.Conv2d(16, 5, 3) |
|
>>> model = FooNet() |
|
>>> init_cfg = dict(type='Constant', val=1, bias=2, layer='Conv2d', |
|
>>> override=dict(type='Constant', name='reg', val=3, bias=4)) |
|
>>> initialize(model, init_cfg) |
|
|
|
>>> model = ResNet(depth=50) |
|
>>> # Initialize weights with the pretrained model. |
|
>>> init_cfg = dict(type='Pretrained', |
|
checkpoint='torchvision://resnet50') |
|
>>> initialize(model, init_cfg) |
|
|
|
>>> # Initialize weights of a sub-module with the specific part of |
|
>>> # a pretrained model by using "prefix". |
|
>>> url = 'http://download.openmmlab.com/mmdetection/v2.0/retinanet/'\ |
|
>>> 'retinanet_r50_fpn_1x_coco/'\ |
|
>>> 'retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth' |
|
>>> init_cfg = dict(type='Pretrained', |
|
checkpoint=url, prefix='backbone.') |
|
""" |
|
if not isinstance(init_cfg, (dict, list)): |
|
raise TypeError(f'init_cfg must be a dict or a list of dict, \ |
|
but got {type(init_cfg)}') |
|
|
|
if isinstance(init_cfg, dict): |
|
init_cfg = [init_cfg] |
|
|
|
for cfg in init_cfg: |
|
|
|
|
|
|
|
|
|
cp_cfg = copy.deepcopy(cfg) |
|
override = cp_cfg.pop('override', None) |
|
_initialize(module, cp_cfg) |
|
|
|
if override is not None: |
|
cp_cfg.pop('layer', None) |
|
_initialize_override(module, override, cp_cfg) |
|
else: |
|
|
|
pass |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor: Tensor, mean: float, std: float, a: float, |
|
b: float) -> Tensor: |
|
|
|
|
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn( |
|
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' |
|
'The distribution of values may be incorrect.', |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
lower = norm_cdf((a - mean) / std) |
|
upper = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * lower - 1, 2 * upper - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor: Tensor, |
|
mean: float = 0., |
|
std: float = 1., |
|
a: float = -2., |
|
b: float = 2.) -> Tensor: |
|
r"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \leq \text{mean} \leq b`. |
|
|
|
Modified from |
|
https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py |
|
|
|
Args: |
|
tensor (``torch.Tensor``): an n-dimensional `torch.Tensor`. |
|
mean (float): the mean of the normal distribution. |
|
std (float): the standard deviation of the normal distribution. |
|
a (float): the minimum cutoff value. |
|
b (float): the maximum cutoff value. |
|
""" |
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|