|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .constants import weights as constant_weights |
|
|
|
|
|
class CrossEntropy2d(nn.Module): |
|
def __init__(self, reduction="mean", ignore_label=255, weights=None, *args, **kwargs): |
|
""" |
|
weight (Tensor, optional): a manual rescaling weight given to each class. |
|
If given, has to be a Tensor of size "nclasses" |
|
""" |
|
super(CrossEntropy2d, self).__init__() |
|
self.reduction = reduction |
|
self.ignore_label = ignore_label |
|
self.weights = weights |
|
if self.weights is not None: |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
self.weights = torch.FloatTensor(constant_weights[weights]).to(device) |
|
|
|
def forward(self, predict, target): |
|
""" |
|
Args: |
|
predict:(n, c, h, w) |
|
target:(n, 1, h, w) |
|
""" |
|
target = target.long() |
|
assert not target.requires_grad |
|
assert predict.dim() == 4, "{0}".format(predict.size()) |
|
assert target.dim() == 4, "{0}".format(target.size()) |
|
assert predict.size(0) == target.size(0), "{0} vs {1} ".format(predict.size(0), target.size(0)) |
|
assert target.size(1) == 1, "{0}".format(target.size(1)) |
|
assert predict.size(2) == target.size(2), "{0} vs {1} ".format(predict.size(2), target.size(2)) |
|
assert predict.size(3) == target.size(3), "{0} vs {1} ".format(predict.size(3), target.size(3)) |
|
target = target.squeeze(1) |
|
n, c, h, w = predict.size() |
|
target_mask = (target >= 0) * (target != self.ignore_label) |
|
target = target[target_mask] |
|
predict = predict.transpose(1, 2).transpose(2, 3).contiguous() |
|
predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c) |
|
loss = F.cross_entropy(predict, target, weight=self.weights, reduction=self.reduction) |
|
return loss |
|
|