File size: 15,290 Bytes
18dd6ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import math
import random
import cv2
import numpy as np
class RandomFliplr(object):
"""Horizontal flip of the sample with given probability.
"""
def __init__(self, probability=0.5):
"""Init.
Args:
probability (float, optional): Flip probability. Defaults to 0.5.
"""
self.__probability = probability
def __call__(self, sample):
prob = random.random()
if prob < self.__probability:
for k, v in sample.items():
if len(v.shape) >= 2:
sample[k] = np.fliplr(v).copy()
return sample
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
)
sample["disparity"] = cv2.resize(
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class RandomCrop(object):
"""Get a random crop of the sample with the given size (width, height).
"""
def __init__(
self,
width,
height,
resize_if_needed=False,
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): output width
height (int): output height
resize_if_needed (bool, optional): If True, sample might be upsampled to ensure
that a crop of size (width, height) is possbile. Defaults to False.
"""
self.__size = (height, width)
self.__resize_if_needed = resize_if_needed
self.__image_interpolation_method = image_interpolation_method
def __call__(self, sample):
shape = sample["disparity"].shape
if self.__size[0] > shape[0] or self.__size[1] > shape[1]:
if self.__resize_if_needed:
shape = apply_min_size(
sample, self.__size, self.__image_interpolation_method
)
else:
raise Exception(
"Output size {} bigger than input size {}.".format(
self.__size, shape
)
)
offset = (
np.random.randint(shape[0] - self.__size[0] + 1),
np.random.randint(shape[1] - self.__size[1] + 1),
)
for k, v in sample.items():
if k == "code" or k == "basis":
continue
if len(sample[k].shape) >= 2:
sample[k] = v[
offset[0]: offset[0] + self.__size[0],
offset[1]: offset[1] + self.__size[1],
]
return sample
class Resize(object):
"""Resize sample to given size (width, height).
"""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
letter_box=False,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
self.__letter_box = letter_box
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of)
* self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of)
* self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented"
)
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, min_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, min_val=self.__width
)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, max_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, max_val=self.__width
)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def make_letter_box(self, sample):
top = bottom = (self.__height - sample.shape[0]) // 2
left = right = (self.__width - sample.shape[1]) // 2
sample = cv2.copyMakeBorder(
sample, top, bottom, left, right, cv2.BORDER_CONSTANT, None, 0)
return sample
def __call__(self, sample):
width, height = self.get_size(
sample["image"].shape[1], sample["image"].shape[0]
)
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__letter_box:
sample["image"] = self.make_letter_box(sample["image"])
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if self.__letter_box:
sample["disparity"] = self.make_letter_box(
sample["disparity"])
if "depth" in sample:
sample["depth"] = cv2.resize(
sample["depth"], (width,
height), interpolation=cv2.INTER_NEAREST
)
if self.__letter_box:
sample["depth"] = self.make_letter_box(sample["depth"])
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if self.__letter_box:
sample["mask"] = self.make_letter_box(sample["mask"])
sample["mask"] = sample["mask"].astype(bool)
return sample
class ResizeFixed(object):
def __init__(self, size):
self.__size = size
def __call__(self, sample):
sample["image"] = cv2.resize(
sample["image"], self.__size[::-1], interpolation=cv2.INTER_LINEAR
)
sample["disparity"] = cv2.resize(
sample["disparity"], self.__size[::-
1], interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
self.__size[::-1],
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return sample
class Rescale(object):
"""Rescale target values to the interval [0, max_val].
If input is constant, values are set to max_val / 2.
"""
def __init__(self, max_val=1.0, use_mask=True):
"""Init.
Args:
max_val (float, optional): Max output value. Defaults to 1.0.
use_mask (bool, optional): Only operate on valid pixels (mask == True). Defaults to True.
"""
self.__max_val = max_val
self.__use_mask = use_mask
def __call__(self, sample):
disp = sample["disparity"]
if self.__use_mask:
mask = sample["mask"]
else:
mask = np.ones_like(disp, dtype=np.bool)
if np.sum(mask) == 0:
return sample
min_val = np.min(disp[mask])
max_val = np.max(disp[mask])
if max_val > min_val:
sample["disparity"][mask] = (
(disp[mask] - min_val) / (max_val - min_val) * self.__max_val
)
else:
sample["disparity"][mask] = np.ones_like(
disp[mask]) * self.__max_val / 2.0
return sample
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
class NormalizeImage(object):
"""Normlize image by given mean and std.
"""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class DepthToDisparity(object):
"""Convert depth to disparity. Removes depth from sample.
"""
def __init__(self, eps=1e-4):
self.__eps = eps
def __call__(self, sample):
assert "depth" in sample
sample["mask"][sample["depth"] < self.__eps] = False
sample["disparity"] = np.zeros_like(sample["depth"])
sample["disparity"][sample["depth"] >= self.__eps] = (
1.0 / sample["depth"][sample["depth"] >= self.__eps]
)
del sample["depth"]
return sample
class DisparityToDepth(object):
"""Convert disparity to depth. Removes disparity from sample.
"""
def __init__(self, eps=1e-4):
self.__eps = eps
def __call__(self, sample):
assert "disparity" in sample
disp = np.abs(sample["disparity"])
sample["mask"][disp < self.__eps] = False
# print(sample["disparity"])
# print(sample["mask"].sum())
# exit()
sample["depth"] = np.zeros_like(disp)
sample["depth"][disp >= self.__eps] = (
1.0 / disp[disp >= self.__eps]
)
del sample["disparity"]
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input.
"""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "disparity" in sample:
disparity = sample["disparity"].astype(np.float32)
sample["disparity"] = np.ascontiguousarray(disparity)
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
return sample
|