File size: 12,291 Bytes
18dd6ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa
from os import path as osp
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.utils import _pair
from torch.onnx.operators import shape_as_tensor
def bilinear_grid_sample(im, grid, align_corners=False):
"""Given an input and a flow-field grid, computes the output using input
values and pixel locations from grid. Supported only bilinear interpolation
method to sample the input pixels.
Args:
im (torch.Tensor): Input feature map, shape (N, C, H, W)
grid (torch.Tensor): Point coordinates, shape (N, Hg, Wg, 2)
align_corners {bool}: If set to True, the extrema (-1 and 1) are
considered as referring to the center points of the input’s
corner pixels. If set to False, they are instead considered as
referring to the corner points of the input’s corner pixels,
making the sampling more resolution agnostic.
Returns:
torch.Tensor: A tensor with sampled points, shape (N, C, Hg, Wg)
"""
n, c, h, w = im.shape
gn, gh, gw, _ = grid.shape
assert n == gn
x = grid[:, :, :, 0]
y = grid[:, :, :, 1]
if align_corners:
x = ((x + 1) / 2) * (w - 1)
y = ((y + 1) / 2) * (h - 1)
else:
x = ((x + 1) * w - 1) / 2
y = ((y + 1) * h - 1) / 2
x = x.view(n, -1)
y = y.view(n, -1)
x0 = torch.floor(x).long()
y0 = torch.floor(y).long()
x1 = x0 + 1
y1 = y0 + 1
wa = ((x1 - x) * (y1 - y)).unsqueeze(1)
wb = ((x1 - x) * (y - y0)).unsqueeze(1)
wc = ((x - x0) * (y1 - y)).unsqueeze(1)
wd = ((x - x0) * (y - y0)).unsqueeze(1)
# Apply default for grid_sample function zero padding
im_padded = F.pad(im, pad=[1, 1, 1, 1], mode='constant', value=0)
padded_h = h + 2
padded_w = w + 2
# save points positions after padding
x0, x1, y0, y1 = x0 + 1, x1 + 1, y0 + 1, y1 + 1
# Clip coordinates to padded image size
x0 = torch.where(x0 < 0, torch.tensor(0), x0)
x0 = torch.where(x0 > padded_w - 1, torch.tensor(padded_w - 1), x0)
x1 = torch.where(x1 < 0, torch.tensor(0), x1)
x1 = torch.where(x1 > padded_w - 1, torch.tensor(padded_w - 1), x1)
y0 = torch.where(y0 < 0, torch.tensor(0), y0)
y0 = torch.where(y0 > padded_h - 1, torch.tensor(padded_h - 1), y0)
y1 = torch.where(y1 < 0, torch.tensor(0), y1)
y1 = torch.where(y1 > padded_h - 1, torch.tensor(padded_h - 1), y1)
im_padded = im_padded.view(n, c, -1)
x0_y0 = (x0 + y0 * padded_w).unsqueeze(1).expand(-1, c, -1)
x0_y1 = (x0 + y1 * padded_w).unsqueeze(1).expand(-1, c, -1)
x1_y0 = (x1 + y0 * padded_w).unsqueeze(1).expand(-1, c, -1)
x1_y1 = (x1 + y1 * padded_w).unsqueeze(1).expand(-1, c, -1)
Ia = torch.gather(im_padded, 2, x0_y0)
Ib = torch.gather(im_padded, 2, x0_y1)
Ic = torch.gather(im_padded, 2, x1_y0)
Id = torch.gather(im_padded, 2, x1_y1)
return (Ia * wa + Ib * wb + Ic * wc + Id * wd).reshape(n, c, gh, gw)
def is_in_onnx_export_without_custom_ops():
from annotator.uniformer.mmcv.ops import get_onnxruntime_op_path
ort_custom_op_path = get_onnxruntime_op_path()
return torch.onnx.is_in_onnx_export(
) and not osp.exists(ort_custom_op_path)
def normalize(grid):
"""Normalize input grid from [-1, 1] to [0, 1]
Args:
grid (Tensor): The grid to be normalize, range [-1, 1].
Returns:
Tensor: Normalized grid, range [0, 1].
"""
return (grid + 1.0) / 2.0
def denormalize(grid):
"""Denormalize input grid from range [0, 1] to [-1, 1]
Args:
grid (Tensor): The grid to be denormalize, range [0, 1].
Returns:
Tensor: Denormalized grid, range [-1, 1].
"""
return grid * 2.0 - 1.0
def generate_grid(num_grid, size, device):
"""Generate regular square grid of points in [0, 1] x [0, 1] coordinate
space.
Args:
num_grid (int): The number of grids to sample, one for each region.
size (tuple(int, int)): The side size of the regular grid.
device (torch.device): Desired device of returned tensor.
Returns:
(torch.Tensor): A tensor of shape (num_grid, size[0]*size[1], 2) that
contains coordinates for the regular grids.
"""
affine_trans = torch.tensor([[[1., 0., 0.], [0., 1., 0.]]], device=device)
grid = F.affine_grid(
affine_trans, torch.Size((1, 1, *size)), align_corners=False)
grid = normalize(grid)
return grid.view(1, -1, 2).expand(num_grid, -1, -1)
def rel_roi_point_to_abs_img_point(rois, rel_roi_points):
"""Convert roi based relative point coordinates to image based absolute
point coordinates.
Args:
rois (Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5)
rel_roi_points (Tensor): Point coordinates inside RoI, relative to
RoI, location, range (0, 1), shape (N, P, 2)
Returns:
Tensor: Image based absolute point coordinates, shape (N, P, 2)
"""
with torch.no_grad():
assert rel_roi_points.size(0) == rois.size(0)
assert rois.dim() == 2
assert rel_roi_points.dim() == 3
assert rel_roi_points.size(2) == 2
# remove batch idx
if rois.size(1) == 5:
rois = rois[:, 1:]
abs_img_points = rel_roi_points.clone()
# To avoid an error during exporting to onnx use independent
# variables instead inplace computation
xs = abs_img_points[:, :, 0] * (rois[:, None, 2] - rois[:, None, 0])
ys = abs_img_points[:, :, 1] * (rois[:, None, 3] - rois[:, None, 1])
xs += rois[:, None, 0]
ys += rois[:, None, 1]
abs_img_points = torch.stack([xs, ys], dim=2)
return abs_img_points
def get_shape_from_feature_map(x):
"""Get spatial resolution of input feature map considering exporting to
onnx mode.
Args:
x (torch.Tensor): Input tensor, shape (N, C, H, W)
Returns:
torch.Tensor: Spatial resolution (width, height), shape (1, 1, 2)
"""
if torch.onnx.is_in_onnx_export():
img_shape = shape_as_tensor(x)[2:].flip(0).view(1, 1, 2).to(
x.device).float()
else:
img_shape = torch.tensor(x.shape[2:]).flip(0).view(1, 1, 2).to(
x.device).float()
return img_shape
def abs_img_point_to_rel_img_point(abs_img_points, img, spatial_scale=1.):
"""Convert image based absolute point coordinates to image based relative
coordinates for sampling.
Args:
abs_img_points (Tensor): Image based absolute point coordinates,
shape (N, P, 2)
img (tuple/Tensor): (height, width) of image or feature map.
spatial_scale (float): Scale points by this factor. Default: 1.
Returns:
Tensor: Image based relative point coordinates for sampling,
shape (N, P, 2)
"""
assert (isinstance(img, tuple) and len(img) == 2) or \
(isinstance(img, torch.Tensor) and len(img.shape) == 4)
if isinstance(img, tuple):
h, w = img
scale = torch.tensor([w, h],
dtype=torch.float,
device=abs_img_points.device)
scale = scale.view(1, 1, 2)
else:
scale = get_shape_from_feature_map(img)
return abs_img_points / scale * spatial_scale
def rel_roi_point_to_rel_img_point(rois,
rel_roi_points,
img,
spatial_scale=1.):
"""Convert roi based relative point coordinates to image based absolute
point coordinates.
Args:
rois (Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5)
rel_roi_points (Tensor): Point coordinates inside RoI, relative to
RoI, location, range (0, 1), shape (N, P, 2)
img (tuple/Tensor): (height, width) of image or feature map.
spatial_scale (float): Scale points by this factor. Default: 1.
Returns:
Tensor: Image based relative point coordinates for sampling,
shape (N, P, 2)
"""
abs_img_point = rel_roi_point_to_abs_img_point(rois, rel_roi_points)
rel_img_point = abs_img_point_to_rel_img_point(abs_img_point, img,
spatial_scale)
return rel_img_point
def point_sample(input, points, align_corners=False, **kwargs):
"""A wrapper around :func:`grid_sample` to support 3D point_coords tensors
Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to
lie inside ``[0, 1] x [0, 1]`` square.
Args:
input (Tensor): Feature map, shape (N, C, H, W).
points (Tensor): Image based absolute point coordinates (normalized),
range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2).
align_corners (bool): Whether align_corners. Default: False
Returns:
Tensor: Features of `point` on `input`, shape (N, C, P) or
(N, C, Hgrid, Wgrid).
"""
add_dim = False
if points.dim() == 3:
add_dim = True
points = points.unsqueeze(2)
if is_in_onnx_export_without_custom_ops():
# If custom ops for onnx runtime not compiled use python
# implementation of grid_sample function to make onnx graph
# with supported nodes
output = bilinear_grid_sample(
input, denormalize(points), align_corners=align_corners)
else:
output = F.grid_sample(
input, denormalize(points), align_corners=align_corners, **kwargs)
if add_dim:
output = output.squeeze(3)
return output
class SimpleRoIAlign(nn.Module):
def __init__(self, output_size, spatial_scale, aligned=True):
"""Simple RoI align in PointRend, faster than standard RoIAlign.
Args:
output_size (tuple[int]): h, w
spatial_scale (float): scale the input boxes by this number
aligned (bool): if False, use the legacy implementation in
MMDetection, align_corners=True will be used in F.grid_sample.
If True, align the results more perfectly.
"""
super(SimpleRoIAlign, self).__init__()
self.output_size = _pair(output_size)
self.spatial_scale = float(spatial_scale)
# to be consistent with other RoI ops
self.use_torchvision = False
self.aligned = aligned
def forward(self, features, rois):
num_imgs = features.size(0)
num_rois = rois.size(0)
rel_roi_points = generate_grid(
num_rois, self.output_size, device=rois.device)
if torch.onnx.is_in_onnx_export():
rel_img_points = rel_roi_point_to_rel_img_point(
rois, rel_roi_points, features, self.spatial_scale)
rel_img_points = rel_img_points.reshape(num_imgs, -1,
*rel_img_points.shape[1:])
point_feats = point_sample(
features, rel_img_points, align_corners=not self.aligned)
point_feats = point_feats.transpose(1, 2)
else:
point_feats = []
for batch_ind in range(num_imgs):
# unravel batch dim
feat = features[batch_ind].unsqueeze(0)
inds = (rois[:, 0].long() == batch_ind)
if inds.any():
rel_img_points = rel_roi_point_to_rel_img_point(
rois[inds], rel_roi_points[inds], feat,
self.spatial_scale).unsqueeze(0)
point_feat = point_sample(
feat, rel_img_points, align_corners=not self.aligned)
point_feat = point_feat.squeeze(0).transpose(0, 1)
point_feats.append(point_feat)
point_feats = torch.cat(point_feats, dim=0)
channels = features.size(1)
roi_feats = point_feats.reshape(num_rois, channels, *self.output_size)
return roi_feats
def __repr__(self):
format_str = self.__class__.__name__
format_str += '(output_size={}, spatial_scale={}'.format(
self.output_size, self.spatial_scale)
return format_str
|