File size: 1,770 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Pidinet
# https://github.com/hellozhuo/pidinet

import os
import torch
import numpy as np
from einops import rearrange
from annotator.pidinet.model import pidinet
from annotator.util import annotator_ckpts_path, safe_step


class PidiNetDetector:
    def __init__(self):
        remote_model_path = "https://huggingface.co./lllyasviel/Annotators/resolve/main/table5_pidinet.pth"
        modelpath = os.path.join(annotator_ckpts_path, "table5_pidinet.pth")
        if not os.path.exists(modelpath):
            from basicsr.utils.download_util import load_file_from_url
            load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
        self.netNetwork = pidinet()
#        self.netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(modelpath)['state_dict'].items()})
        self.netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(modelpath, map_location=torch.device('cpu'))['state_dict'].items()})
#        self.netNetwork = self.netNetwork.cuda()
        self.netNetwork = self.netNetwork.cpu()
        self.netNetwork.eval()

    def __call__(self, input_image, safe=False):
        assert input_image.ndim == 3
        input_image = input_image[:, :, ::-1].copy()
        with torch.no_grad():
#            image_pidi = torch.from_numpy(input_image).float().cuda()
            image_pidi = torch.from_numpy(input_image).float().cpu()
            image_pidi = image_pidi / 255.0
            image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w')
            edge = self.netNetwork(image_pidi)[-1]
            edge = edge.cpu().numpy()
            if safe:
                edge = safe_step(edge)
            edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
            return edge[0][0]