File size: 38,328 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
# Copyright (c) Facebook, Inc. and its affiliates.

import collections
import copy
import functools
import logging
import numpy as np
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from unittest import mock
import caffe2.python.utils as putils
import torch
import torch.nn.functional as F
from caffe2.proto import caffe2_pb2
from caffe2.python import core, net_drawer, workspace
from torch.nn.functional import interpolate as interp

logger = logging.getLogger(__name__)


# ==== torch/utils_toffee/cast.py =======================================


def to_device(t, device_str):
    """
    This function is a replacement of .to(another_device) such that it allows the
    casting to be traced properly by explicitly calling the underlying copy ops.
    It also avoids introducing unncessary op when casting to the same device.
    """
    src = t.device
    dst = torch.device(device_str)

    if src == dst:
        return t
    elif src.type == "cuda" and dst.type == "cpu":
        return torch.ops._caffe2.CopyGPUToCPU(t)
    elif src.type == "cpu" and dst.type == "cuda":
        return torch.ops._caffe2.CopyCPUToGPU(t)
    else:
        raise RuntimeError("Can't cast tensor from device {} to device {}".format(src, dst))


# ==== torch/utils_toffee/interpolate.py =======================================


# Note: borrowed from vision/detection/fair/detectron/detectron/modeling/detector.py
def BilinearInterpolation(tensor_in, up_scale):
    assert up_scale % 2 == 0, "Scale should be even"

    def upsample_filt(size):
        factor = (size + 1) // 2
        if size % 2 == 1:
            center = factor - 1
        else:
            center = factor - 0.5

        og = np.ogrid[:size, :size]
        return (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)

    kernel_size = int(up_scale) * 2
    bil_filt = upsample_filt(kernel_size)

    dim = int(tensor_in.shape[1])
    kernel = np.zeros((dim, dim, kernel_size, kernel_size), dtype=np.float32)
    kernel[range(dim), range(dim), :, :] = bil_filt

    tensor_out = F.conv_transpose2d(
        tensor_in,
        weight=to_device(torch.Tensor(kernel), tensor_in.device),
        bias=None,
        stride=int(up_scale),
        padding=int(up_scale / 2),
    )

    return tensor_out


# NOTE: ONNX is incompatible with traced torch.nn.functional.interpolate if
# using dynamic `scale_factor` rather than static `size`. (T43166860)
# NOTE: Caffe2 Int8 conversion might not be able to quantize `size` properly.
def onnx_compatibale_interpolate(
    input, size=None, scale_factor=None, mode="nearest", align_corners=None
):
    # NOTE: The input dimensions are interpreted in the form:
    # `mini-batch x channels x [optional depth] x [optional height] x width`.
    if size is None and scale_factor is not None:
        if input.dim() == 4:
            if isinstance(scale_factor, (int, float)):
                height_scale, width_scale = (scale_factor, scale_factor)
            else:
                assert isinstance(scale_factor, (tuple, list))
                assert len(scale_factor) == 2
                height_scale, width_scale = scale_factor

            assert not align_corners, "No matching C2 op for align_corners == True"
            if mode == "nearest":
                return torch.ops._caffe2.ResizeNearest(
                    input, order="NCHW", width_scale=width_scale, height_scale=height_scale
                )
            elif mode == "bilinear":
                logger.warning(
                    "Use F.conv_transpose2d for bilinear interpolate"
                    " because there's no such C2 op, this may cause significant"
                    " slowdown and the boundary pixels won't be as same as"
                    " using F.interpolate due to padding."
                )
                assert height_scale == width_scale
                return BilinearInterpolation(input, up_scale=height_scale)
        logger.warning("Output size is not static, it might cause ONNX conversion issue")

    return interp(input, size, scale_factor, mode, align_corners)


def mock_torch_nn_functional_interpolate():
    def decorator(func):
        @functools.wraps(func)
        def _mock_torch_nn_functional_interpolate(*args, **kwargs):
            if torch.onnx.is_in_onnx_export():
                with mock.patch(
                    "torch.nn.functional.interpolate", side_effect=onnx_compatibale_interpolate
                ):
                    return func(*args, **kwargs)
            else:
                return func(*args, **kwargs)

        return _mock_torch_nn_functional_interpolate

    return decorator


# ==== torch/utils_caffe2/ws_utils.py ==========================================


class ScopedWS(object):
    def __init__(self, ws_name, is_reset, is_cleanup=False):
        self.ws_name = ws_name
        self.is_reset = is_reset
        self.is_cleanup = is_cleanup
        self.org_ws = ""

    def __enter__(self):
        self.org_ws = workspace.CurrentWorkspace()
        if self.ws_name is not None:
            workspace.SwitchWorkspace(self.ws_name, True)
        if self.is_reset:
            workspace.ResetWorkspace()

        return workspace

    def __exit__(self, *args):
        if self.is_cleanup:
            workspace.ResetWorkspace()
        if self.ws_name is not None:
            workspace.SwitchWorkspace(self.org_ws)


def fetch_any_blob(name):
    bb = None
    try:
        bb = workspace.FetchBlob(name)
    except TypeError:
        bb = workspace.FetchInt8Blob(name)
    except Exception as e:
        logger.error("Get blob {} error: {}".format(name, e))

    return bb


# ==== torch/utils_caffe2/protobuf.py ==========================================


def get_pb_arg(pb, arg_name):
    for x in pb.arg:
        if x.name == arg_name:
            return x
    return None


def get_pb_arg_valf(pb, arg_name, default_val):
    arg = get_pb_arg(pb, arg_name)
    return arg.f if arg is not None else default_val


def get_pb_arg_floats(pb, arg_name, default_val):
    arg = get_pb_arg(pb, arg_name)
    return list(map(float, arg.floats)) if arg is not None else default_val


def get_pb_arg_ints(pb, arg_name, default_val):
    arg = get_pb_arg(pb, arg_name)
    return list(map(int, arg.ints)) if arg is not None else default_val


def get_pb_arg_vali(pb, arg_name, default_val):
    arg = get_pb_arg(pb, arg_name)
    return arg.i if arg is not None else default_val


def get_pb_arg_vals(pb, arg_name, default_val):
    arg = get_pb_arg(pb, arg_name)
    return arg.s if arg is not None else default_val


def get_pb_arg_valstrings(pb, arg_name, default_val):
    arg = get_pb_arg(pb, arg_name)
    return list(arg.strings) if arg is not None else default_val


def check_set_pb_arg(pb, arg_name, arg_attr, arg_value, allow_override=False):
    arg = get_pb_arg(pb, arg_name)
    if arg is None:
        arg = putils.MakeArgument(arg_name, arg_value)
        assert hasattr(arg, arg_attr)
        pb.arg.extend([arg])
    if allow_override and getattr(arg, arg_attr) != arg_value:
        logger.warning(
            "Override argument {}: {} -> {}".format(arg_name, getattr(arg, arg_attr), arg_value)
        )
        setattr(arg, arg_attr, arg_value)
    else:
        assert arg is not None
        assert getattr(arg, arg_attr) == arg_value, "Existing value {}, new value {}".format(
            getattr(arg, arg_attr), arg_value
        )


def _create_const_fill_op_from_numpy(name, tensor, device_option=None):
    assert type(tensor) == np.ndarray
    kTypeNameMapper = {
        np.dtype("float32"): "GivenTensorFill",
        np.dtype("int32"): "GivenTensorIntFill",
        np.dtype("int64"): "GivenTensorInt64Fill",
        np.dtype("uint8"): "GivenTensorStringFill",
    }

    args_dict = {}
    if tensor.dtype == np.dtype("uint8"):
        args_dict.update({"values": [str(tensor.data)], "shape": [1]})
    else:
        args_dict.update({"values": tensor, "shape": tensor.shape})

    if device_option is not None:
        args_dict["device_option"] = device_option

    return core.CreateOperator(kTypeNameMapper[tensor.dtype], [], [name], **args_dict)


def _create_const_fill_op_from_c2_int8_tensor(name, int8_tensor):
    assert type(int8_tensor) == workspace.Int8Tensor
    kTypeNameMapper = {
        np.dtype("int32"): "Int8GivenIntTensorFill",
        np.dtype("uint8"): "Int8GivenTensorFill",
    }

    tensor = int8_tensor.data
    assert tensor.dtype in [np.dtype("uint8"), np.dtype("int32")]
    values = tensor.tobytes() if tensor.dtype == np.dtype("uint8") else tensor

    return core.CreateOperator(
        kTypeNameMapper[tensor.dtype],
        [],
        [name],
        values=values,
        shape=tensor.shape,
        Y_scale=int8_tensor.scale,
        Y_zero_point=int8_tensor.zero_point,
    )


def create_const_fill_op(
    name: str,
    blob: Union[np.ndarray, workspace.Int8Tensor],
    device_option: Optional[caffe2_pb2.DeviceOption] = None,
) -> caffe2_pb2.OperatorDef:
    """
    Given a blob object, return the Caffe2 operator that creates this blob
    as constant. Currently support NumPy tensor and Caffe2 Int8Tensor.
    """

    tensor_type = type(blob)
    assert tensor_type in [
        np.ndarray,
        workspace.Int8Tensor,
    ], 'Error when creating const fill op for "{}", unsupported blob type: {}'.format(
        name, type(blob)
    )

    if tensor_type == np.ndarray:
        return _create_const_fill_op_from_numpy(name, blob, device_option)
    elif tensor_type == workspace.Int8Tensor:
        assert device_option is None
        return _create_const_fill_op_from_c2_int8_tensor(name, blob)


def construct_init_net_from_params(
    params: Dict[str, Any], device_options: Optional[Dict[str, caffe2_pb2.DeviceOption]] = None
) -> caffe2_pb2.NetDef:
    """
    Construct the init_net from params dictionary
    """
    init_net = caffe2_pb2.NetDef()
    device_options = device_options or {}
    for name, blob in params.items():
        if isinstance(blob, str):
            logger.warning(
                (
                    "Blob {} with type {} is not supported in generating init net,"
                    " skipped.".format(name, type(blob))
                )
            )
            continue
        init_net.op.extend(
            [create_const_fill_op(name, blob, device_option=device_options.get(name, None))]
        )
        init_net.external_output.append(name)
    return init_net


def get_producer_map(ssa):
    """
    Return dict from versioned blob to (i, j),
        where i is index of producer op, j is the index of output of that op.
    """
    producer_map = {}
    for i in range(len(ssa)):
        outputs = ssa[i][1]
        for j, outp in enumerate(outputs):
            producer_map[outp] = (i, j)
    return producer_map


def get_consumer_map(ssa):
    """
    Return dict from versioned blob to list of (i, j),
        where i is index of consumer op, j is the index of input of that op.
    """
    consumer_map = collections.defaultdict(list)
    for i in range(len(ssa)):
        inputs = ssa[i][0]
        for j, inp in enumerate(inputs):
            consumer_map[inp].append((i, j))
    return consumer_map


def get_params_from_init_net(
    init_net: caffe2_pb2.NetDef,
) -> [Dict[str, Any], Dict[str, caffe2_pb2.DeviceOption]]:
    """
    Take the output blobs from init_net by running it.
    Outputs:
        params: dict from blob name to numpy array
        device_options: dict from blob name to the device option of its creating op
    """
    # NOTE: this assumes that the params is determined by producer op with the
    # only exception be CopyGPUToCPU which is CUDA op but returns CPU tensor.
    def _get_device_option(producer_op):
        if producer_op.type == "CopyGPUToCPU":
            return caffe2_pb2.DeviceOption()
        else:
            return producer_op.device_option

    with ScopedWS("__get_params_from_init_net__", is_reset=True, is_cleanup=True) as ws:
        ws.RunNetOnce(init_net)
        params = {b: fetch_any_blob(b) for b in init_net.external_output}
    ssa, versions = core.get_ssa(init_net)
    producer_map = get_producer_map(ssa)
    device_options = {
        b: _get_device_option(init_net.op[producer_map[(b, versions[b])][0]])
        for b in init_net.external_output
    }
    return params, device_options


def _updater_raise(op, input_types, output_types):
    raise RuntimeError(
        "Failed to apply updater for op {} given input_types {} and"
        " output_types {}".format(op, input_types, output_types)
    )


def _generic_status_identifier(
    predict_net: caffe2_pb2.NetDef,
    status_updater: Callable,
    known_status: Dict[Tuple[str, int], Any],
) -> Dict[Tuple[str, int], Any]:
    """
    Statically infer the status of each blob, the status can be such as device type
        (CPU/GPU), layout (NCHW/NHWC), data type (float32/int8), etc. "Blob" here
        is versioned blob (Tuple[str, int]) in the format compatible with ssa.
    Inputs:
        predict_net: the caffe2 network
        status_updater: a callable, given an op and the status of its input/output,
            it returns the updated status of input/output. `None` is used for
            representing unknown status.
        known_status: a dict containing known status, used as initialization.
    Outputs:
        A dict mapping from versioned blob to its status
    """
    ssa, versions = core.get_ssa(predict_net)
    versioned_ext_input = [(b, 0) for b in predict_net.external_input]
    versioned_ext_output = [(b, versions[b]) for b in predict_net.external_output]
    all_versioned_blobs = set().union(*[set(x[0] + x[1]) for x in ssa])

    allowed_vbs = all_versioned_blobs.union(versioned_ext_input).union(versioned_ext_output)
    assert all(k in allowed_vbs for k in known_status)
    assert all(v is not None for v in known_status.values())
    _known_status = copy.deepcopy(known_status)

    def _check_and_update(key, value):
        assert value is not None
        if key in _known_status:
            if not _known_status[key] == value:
                raise RuntimeError(
                    "Confilict status for {}, existing status {}, new status {}".format(
                        key, _known_status[key], value
                    )
                )
        _known_status[key] = value

    def _update_i(op, ssa_i):
        versioned_inputs = ssa_i[0]
        versioned_outputs = ssa_i[1]

        inputs_status = [_known_status.get(b, None) for b in versioned_inputs]
        outputs_status = [_known_status.get(b, None) for b in versioned_outputs]

        new_inputs_status, new_outputs_status = status_updater(op, inputs_status, outputs_status)

        for versioned_blob, status in zip(
            versioned_inputs + versioned_outputs, new_inputs_status + new_outputs_status
        ):
            if status is not None:
                _check_and_update(versioned_blob, status)

    for op, ssa_i in zip(predict_net.op, ssa):
        _update_i(op, ssa_i)
    for op, ssa_i in zip(reversed(predict_net.op), reversed(ssa)):
        _update_i(op, ssa_i)

    # NOTE: This strictly checks all the blob from predict_net must be assgined
    # a known status. However sometimes it's impossible (eg. having deadend op),
    # we may relax this constraint if
    for k in all_versioned_blobs:
        if k not in _known_status:
            raise NotImplementedError(
                "Can not infer the status for {}. Currently only support the case where"
                " a single forward and backward pass can identify status for all blobs.".format(k)
            )

    return _known_status


def infer_device_type(
    predict_net: caffe2_pb2.NetDef,
    known_status: Dict[Tuple[str, int], Any],
    device_name_style: str = "caffe2",
) -> Dict[Tuple[str, int], str]:
    """Return the device type ("cpu" or "gpu"/"cuda") of each (versioned) blob"""

    assert device_name_style in ["caffe2", "pytorch"]
    _CPU_STR = "cpu"
    _GPU_STR = "gpu" if device_name_style == "caffe2" else "cuda"

    def _copy_cpu_to_gpu_updater(op, input_types, output_types):
        if input_types[0] == _GPU_STR or output_types[0] == _CPU_STR:
            _updater_raise(op, input_types, output_types)
        return ([_CPU_STR], [_GPU_STR])

    def _copy_gpu_to_cpu_updater(op, input_types, output_types):
        if input_types[0] == _CPU_STR or output_types[0] == _GPU_STR:
            _updater_raise(op, input_types, output_types)
        return ([_GPU_STR], [_CPU_STR])

    def _other_ops_updater(op, input_types, output_types):
        non_none_types = [x for x in input_types + output_types if x is not None]
        if len(non_none_types) > 0:
            the_type = non_none_types[0]
            if not all(x == the_type for x in non_none_types):
                _updater_raise(op, input_types, output_types)
        else:
            the_type = None
        return ([the_type for _ in op.input], [the_type for _ in op.output])

    def _device_updater(op, *args, **kwargs):
        return {
            "CopyCPUToGPU": _copy_cpu_to_gpu_updater,
            "CopyGPUToCPU": _copy_gpu_to_cpu_updater,
        }.get(op.type, _other_ops_updater)(op, *args, **kwargs)

    return _generic_status_identifier(predict_net, _device_updater, known_status)


# ==== torch/utils_caffe2/vis.py ===============================================


def _modify_blob_names(ops, blob_rename_f):
    ret = []

    def _replace_list(blob_list, replaced_list):
        del blob_list[:]
        blob_list.extend(replaced_list)

    for x in ops:
        cur = copy.deepcopy(x)
        _replace_list(cur.input, list(map(blob_rename_f, cur.input)))
        _replace_list(cur.output, list(map(blob_rename_f, cur.output)))
        ret.append(cur)

    return ret


def _rename_blob(name, blob_sizes, blob_ranges):
    def _list_to_str(bsize):
        ret = ", ".join([str(x) for x in bsize])
        ret = "[" + ret + "]"
        return ret

    ret = name
    if blob_sizes is not None and name in blob_sizes:
        ret += "\n" + _list_to_str(blob_sizes[name])
    if blob_ranges is not None and name in blob_ranges:
        ret += "\n" + _list_to_str(blob_ranges[name])

    return ret


# graph_name could not contain word 'graph'
def save_graph(net, file_name, graph_name="net", op_only=True, blob_sizes=None, blob_ranges=None):
    blob_rename_f = functools.partial(_rename_blob, blob_sizes=blob_sizes, blob_ranges=blob_ranges)
    return save_graph_base(net, file_name, graph_name, op_only, blob_rename_f)


def save_graph_base(net, file_name, graph_name="net", op_only=True, blob_rename_func=None):
    graph = None
    ops = net.op
    if blob_rename_func is not None:
        ops = _modify_blob_names(ops, blob_rename_func)
    if not op_only:
        graph = net_drawer.GetPydotGraph(ops, graph_name, rankdir="TB")
    else:
        graph = net_drawer.GetPydotGraphMinimal(
            ops, graph_name, rankdir="TB", minimal_dependency=True
        )

    try:
        par_dir = os.path.dirname(file_name)
        if not os.path.exists(par_dir):
            os.makedirs(par_dir)

        format = os.path.splitext(os.path.basename(file_name))[-1]
        if format == ".png":
            graph.write_png(file_name)
        elif format == ".pdf":
            graph.write_pdf(file_name)
        elif format == ".svg":
            graph.write_svg(file_name)
        else:
            print("Incorrect format {}".format(format))
    except Exception as e:
        print("Error when writing graph to image {}".format(e))

    return graph


# ==== torch/utils_toffee/aten_to_caffe2.py ====================================


def group_norm_replace_aten_with_caffe2(predict_net: caffe2_pb2.NetDef):
    """
    For ONNX exported model, GroupNorm will be represented as ATen op,
        this can be a drop in replacement from ATen to GroupNorm
    """
    count = 0
    for op in predict_net.op:
        if op.type == "ATen":
            op_name = get_pb_arg_vals(op, "operator", None)  # return byte in py3
            if op_name and op_name.decode() == "group_norm":
                op.arg.remove(get_pb_arg(op, "operator"))

                if get_pb_arg_vali(op, "cudnn_enabled", None):
                    op.arg.remove(get_pb_arg(op, "cudnn_enabled"))

                num_groups = get_pb_arg_vali(op, "num_groups", None)
                if num_groups is not None:
                    op.arg.remove(get_pb_arg(op, "num_groups"))
                    check_set_pb_arg(op, "group", "i", num_groups)

                op.type = "GroupNorm"
                count += 1
    if count > 1:
        logger.info("Replaced {} ATen operator to GroupNormOp".format(count))


# ==== torch/utils_toffee/alias.py =============================================


def alias(x, name, is_backward=False):
    if not torch.onnx.is_in_onnx_export():
        return x
    assert isinstance(x, torch.Tensor)
    return torch.ops._caffe2.AliasWithName(x, name, is_backward=is_backward)


def fuse_alias_placeholder(predict_net, init_net):
    """Remove AliasWithName placeholder and rename the input/output of it"""
    # First we finish all the re-naming
    for i, op in enumerate(predict_net.op):
        if op.type == "AliasWithName":
            assert len(op.input) == 1
            assert len(op.output) == 1
            name = get_pb_arg_vals(op, "name", None).decode()
            is_backward = bool(get_pb_arg_vali(op, "is_backward", 0))
            rename_op_input(predict_net, init_net, i, 0, name, from_producer=is_backward)
            rename_op_output(predict_net, i, 0, name)

    # Remove AliasWithName, should be very safe since it's a non-op
    new_ops = []
    for op in predict_net.op:
        if op.type != "AliasWithName":
            new_ops.append(op)
        else:
            # safety check
            assert op.input == op.output
            assert op.input[0] == op.arg[0].s.decode()
    del predict_net.op[:]
    predict_net.op.extend(new_ops)


# ==== torch/utils_caffe2/graph_transform.py ===================================


class IllegalGraphTransformError(ValueError):
    """When a graph transform function call can't be executed."""


def _rename_versioned_blob_in_proto(
    proto: caffe2_pb2.NetDef,
    old_name: str,
    new_name: str,
    version: int,
    ssa: List[Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]],
    start_versions: Dict[str, int],
    end_versions: Dict[str, int],
):
    """In given proto, rename all blobs with matched version"""
    # Operater list
    for op, i_th_ssa in zip(proto.op, ssa):
        versioned_inputs, versioned_outputs = i_th_ssa
        for i in range(len(op.input)):
            if versioned_inputs[i] == (old_name, version):
                op.input[i] = new_name
        for i in range(len(op.output)):
            if versioned_outputs[i] == (old_name, version):
                op.output[i] = new_name
    # external_input
    if start_versions.get(old_name, 0) == version:
        for i in range(len(proto.external_input)):
            if proto.external_input[i] == old_name:
                proto.external_input[i] = new_name
    # external_output
    if end_versions.get(old_name, 0) == version:
        for i in range(len(proto.external_output)):
            if proto.external_output[i] == old_name:
                proto.external_output[i] = new_name


def rename_op_input(
    predict_net: caffe2_pb2.NetDef,
    init_net: caffe2_pb2.NetDef,
    op_id: int,
    input_id: int,
    new_name: str,
    from_producer: bool = False,
):
    """
    Rename the op_id-th operator in predict_net, change it's input_id-th input's
        name to the new_name. It also does automatic re-route and change
        external_input and init_net if necessary.
    - It requires the input is only consumed by this op.
    - This function modifies predict_net and init_net in-place.
    - When from_producer is enable, this also updates other operators that consumes
        the same input. Be cautious because may trigger unintended behavior.
    """
    assert isinstance(predict_net, caffe2_pb2.NetDef)
    assert isinstance(init_net, caffe2_pb2.NetDef)

    init_net_ssa, init_net_versions = core.get_ssa(init_net)
    predict_net_ssa, predict_net_versions = core.get_ssa(
        predict_net, copy.deepcopy(init_net_versions)
    )

    versioned_inputs, versioned_outputs = predict_net_ssa[op_id]
    old_name, version = versioned_inputs[input_id]

    if from_producer:
        producer_map = get_producer_map(predict_net_ssa)
        if not (old_name, version) in producer_map:
            raise NotImplementedError(
                "Can't find producer, the input {} is probably from"
                " init_net, this is not supported yet.".format(old_name)
            )
        producer = producer_map[(old_name, version)]
        rename_op_output(predict_net, producer[0], producer[1], new_name)
        return

    def contain_targets(op_ssa):
        return (old_name, version) in op_ssa[0]

    is_consumer = [contain_targets(op_ssa) for op_ssa in predict_net_ssa]
    if sum(is_consumer) > 1:
        raise IllegalGraphTransformError(
            (
                "Input '{}' of operator(#{}) are consumed by other ops, please use"
                + " rename_op_output on the producer instead. Offending op: \n{}"
            ).format(old_name, op_id, predict_net.op[op_id])
        )

    # update init_net
    _rename_versioned_blob_in_proto(
        init_net, old_name, new_name, version, init_net_ssa, {}, init_net_versions
    )
    # update predict_net
    _rename_versioned_blob_in_proto(
        predict_net,
        old_name,
        new_name,
        version,
        predict_net_ssa,
        init_net_versions,
        predict_net_versions,
    )


def rename_op_output(predict_net: caffe2_pb2.NetDef, op_id: int, output_id: int, new_name: str):
    """
    Rename the op_id-th operator in predict_net, change it's output_id-th input's
        name to the new_name. It also does automatic re-route and change
        external_output and if necessary.
    - It allows multiple consumers of its output.
    - This function modifies predict_net in-place, doesn't need init_net.
    """
    assert isinstance(predict_net, caffe2_pb2.NetDef)

    ssa, blob_versions = core.get_ssa(predict_net)

    versioned_inputs, versioned_outputs = ssa[op_id]
    old_name, version = versioned_outputs[output_id]

    # update predict_net
    _rename_versioned_blob_in_proto(
        predict_net, old_name, new_name, version, ssa, {}, blob_versions
    )


def get_sub_graph_external_input_output(
    predict_net: caffe2_pb2.NetDef, sub_graph_op_indices: List[int]
) -> Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]:
    """
    Return the list of external input/output of sub-graph,
    each element is tuple of the name and corresponding version in predict_net.

    external input/output is defined the same way as caffe2 NetDef.
    """
    ssa, versions = core.get_ssa(predict_net)

    all_inputs = []
    all_outputs = []
    for op_id in sub_graph_op_indices:
        all_inputs += [inp for inp in ssa[op_id][0] if inp not in all_inputs]
        all_outputs += list(ssa[op_id][1])  # ssa output won't repeat

    # for versioned blobs, external inputs are just those blob in all_inputs
    # but not in all_outputs
    ext_inputs = [inp for inp in all_inputs if inp not in all_outputs]

    # external outputs are essentially outputs of this subgraph that are used
    # outside of this sub-graph (including predict_net.external_output)
    all_other_inputs = sum(
        (ssa[i][0] for i in range(len(ssa)) if i not in sub_graph_op_indices),
        [(outp, versions[outp]) for outp in predict_net.external_output],
    )
    ext_outputs = [outp for outp in all_outputs if outp in set(all_other_inputs)]

    return ext_inputs, ext_outputs


class DiGraph:
    """A DAG representation of caffe2 graph, each vertice is a versioned blob."""

    def __init__(self):
        self.vertices = set()
        self.graph = collections.defaultdict(list)

    def add_edge(self, u, v):
        self.graph[u].append(v)
        self.vertices.add(u)
        self.vertices.add(v)

    # grab from https://www.geeksforgeeks.org/find-paths-given-source-destination/
    def get_all_paths(self, s, d):
        visited = {k: False for k in self.vertices}
        path = []
        all_paths = []

        def _get_all_paths_util(graph, u, d, visited, path):
            visited[u] = True
            path.append(u)
            if u == d:
                all_paths.append(copy.deepcopy(path))
            else:
                for i in graph[u]:
                    if not visited[i]:
                        _get_all_paths_util(graph, i, d, visited, path)
            path.pop()
            visited[u] = False

        _get_all_paths_util(self.graph, s, d, visited, path)
        return all_paths

    @staticmethod
    def from_ssa(ssa):
        graph = DiGraph()
        for op_id in range(len(ssa)):
            for inp in ssa[op_id][0]:
                for outp in ssa[op_id][1]:
                    graph.add_edge(inp, outp)
        return graph


def _get_dependency_chain(ssa, versioned_target, versioned_source):
    """
    Return the index list of relevant operator to produce target blob from source blob,
        if there's no dependency, return empty list.
    """

    # finding all paths between nodes can be O(N!), thus we can only search
    # in the subgraph using the op starting from the first consumer of source blob
    # to the producer of the target blob.
    consumer_map = get_consumer_map(ssa)
    producer_map = get_producer_map(ssa)
    start_op = min(x[0] for x in consumer_map[versioned_source]) - 15
    end_op = (
        producer_map[versioned_target][0] + 15 if versioned_target in producer_map else start_op
    )
    sub_graph_ssa = ssa[start_op : end_op + 1]
    if len(sub_graph_ssa) > 30:
        logger.warning(
            "Subgraph bebetween {} and {} is large (from op#{} to op#{}), it"
            " might take non-trival time to find all paths between them.".format(
                versioned_source, versioned_target, start_op, end_op
            )
        )

    dag = DiGraph.from_ssa(sub_graph_ssa)
    paths = dag.get_all_paths(versioned_source, versioned_target)  # include two ends
    ops_in_paths = [[producer_map[blob][0] for blob in path[1:]] for path in paths]
    return sorted(set().union(*[set(ops) for ops in ops_in_paths]))


def identify_reshape_sub_graph(predict_net: caffe2_pb2.NetDef) -> List[List[int]]:
    """
    Idenfity the reshape sub-graph in a protobuf.
    The reshape sub-graph is defined as matching the following pattern:

    (input_blob) -> Op_1 -> ... -> Op_N -> (new_shape) -─┐
        └-------------------------------------------> Reshape -> (output_blob)

    Return:
        List of sub-graphs, each sub-graph is represented as a list of indices
        of the relavent ops, [Op_1, Op_2, ..., Op_N, Reshape]
    """

    ssa, _ = core.get_ssa(predict_net)

    ret = []
    for i, op in enumerate(predict_net.op):
        if op.type == "Reshape":
            assert len(op.input) == 2
            input_ssa = ssa[i][0]
            data_source = input_ssa[0]
            shape_source = input_ssa[1]
            op_indices = _get_dependency_chain(ssa, shape_source, data_source)
            ret.append(op_indices + [i])
    return ret


def remove_reshape_for_fc(predict_net, params):
    """
    In PyTorch nn.Linear has to take 2D tensor, this often leads to reshape
        a 4D tensor to 2D by calling .view(). However this (dynamic) reshaping
        doesn't work well with ONNX and Int8 tools, and cause using extra
        ops (eg. ExpandDims) that might not be available on mobile.
    Luckily Caffe2 supports 4D tensor for FC, so we can remove those reshape
        after exporting ONNX model.
    """
    from caffe2.python import core

    # find all reshape sub-graph that can be removed, which is now all Reshape
    # sub-graph whose output is only consumed by FC.
    # TODO: to make it safer, we may need the actually value to better determine
    # if a Reshape before FC is removable.
    reshape_sub_graphs = identify_reshape_sub_graph(predict_net)
    sub_graphs_to_remove = []
    for reshape_sub_graph in reshape_sub_graphs:
        reshape_op_id = reshape_sub_graph[-1]
        assert predict_net.op[reshape_op_id].type == "Reshape"
        ssa, _ = core.get_ssa(predict_net)
        reshape_output = ssa[reshape_op_id][1][0]
        consumers = [i for i in range(len(ssa)) if reshape_output in ssa[i][0]]
        if all(predict_net.op[consumer].type == "FC" for consumer in consumers):
            # safety check if the sub-graph is isolated, for this reshape sub-graph,
            # it means it has one non-param external input and one external output.
            ext_inputs, ext_outputs = get_sub_graph_external_input_output(
                predict_net, reshape_sub_graph
            )
            non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0]
            if len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1:
                sub_graphs_to_remove.append(reshape_sub_graph)

    # perform removing subgraph by:
    # 1: rename the Reshape's output to its input, then the graph can be
    #   seen as in-place itentify, meaning whose external input/output are the same.
    # 2: simply remove those ops.
    remove_op_ids = []
    params_to_remove = []
    for sub_graph in sub_graphs_to_remove:
        logger.info(
            "Remove Reshape sub-graph:\n{}".format(
                "".join(["(#{:>4})\n{}".format(i, predict_net.op[i]) for i in sub_graph])
            )
        )
        reshape_op_id = sub_graph[-1]
        new_reshap_output = predict_net.op[reshape_op_id].input[0]
        rename_op_output(predict_net, reshape_op_id, 0, new_reshap_output)
        ext_inputs, ext_outputs = get_sub_graph_external_input_output(predict_net, sub_graph)
        non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0]
        params_ext_inputs = [inp for inp in ext_inputs if inp[1] == 0]
        assert len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1
        assert ext_outputs[0][0] == non_params_ext_inputs[0][0]
        assert ext_outputs[0][1] == non_params_ext_inputs[0][1] + 1
        remove_op_ids.extend(sub_graph)
        params_to_remove.extend(params_ext_inputs)

    predict_net = copy.deepcopy(predict_net)
    new_ops = [op for i, op in enumerate(predict_net.op) if i not in remove_op_ids]
    del predict_net.op[:]
    predict_net.op.extend(new_ops)
    for versioned_params in params_to_remove:
        name = versioned_params[0]
        logger.info("Remove params: {} from init_net and predict_net.external_input".format(name))
        del params[name]
        predict_net.external_input.remove(name)

    return predict_net, params


def fuse_copy_between_cpu_and_gpu(predict_net: caffe2_pb2.NetDef):
    """
    In-place fuse extra copy ops between cpu/gpu for the following case:
        a -CopyAToB-> b -CopyBToA> c1 -NextOp1-> d1
                        -CopyBToA> c2 -NextOp2-> d2
    The fused network will look like:
        a -NextOp1-> d1
          -NextOp2-> d2
    """

    _COPY_OPS = ["CopyCPUToGPU", "CopyGPUToCPU"]

    def _fuse_once(predict_net):
        ssa, blob_versions = core.get_ssa(predict_net)
        consumer_map = get_consumer_map(ssa)
        versioned_external_output = [
            (name, blob_versions[name]) for name in predict_net.external_output
        ]

        for op_id, op in enumerate(predict_net.op):
            if op.type in _COPY_OPS:
                fw_copy_versioned_output = ssa[op_id][1][0]
                consumer_ids = [x[0] for x in consumer_map[fw_copy_versioned_output]]
                reverse_op_type = _COPY_OPS[1 - _COPY_OPS.index(op.type)]

                is_fusable = (
                    len(consumer_ids) > 0
                    and fw_copy_versioned_output not in versioned_external_output
                    and all(
                        predict_net.op[_op_id].type == reverse_op_type
                        and ssa[_op_id][1][0] not in versioned_external_output
                        for _op_id in consumer_ids
                    )
                )

                if is_fusable:
                    for rv_copy_op_id in consumer_ids:
                        # making each NextOp uses "a" directly and removing Copy ops
                        rs_copy_versioned_output = ssa[rv_copy_op_id][1][0]
                        next_op_id, inp_id = consumer_map[rs_copy_versioned_output][0]
                        predict_net.op[next_op_id].input[inp_id] = op.input[0]
                    # remove CopyOps
                    new_ops = [
                        op
                        for i, op in enumerate(predict_net.op)
                        if i != op_id and i not in consumer_ids
                    ]
                    del predict_net.op[:]
                    predict_net.op.extend(new_ops)
                    return True

        return False

    # _fuse_once returns False is nothing can be fused
    while _fuse_once(predict_net):
        pass


def remove_dead_end_ops(net_def: caffe2_pb2.NetDef):
    """remove ops if its output is not used or not in external_output"""
    ssa, versions = core.get_ssa(net_def)
    versioned_external_output = [(name, versions[name]) for name in net_def.external_output]
    consumer_map = get_consumer_map(ssa)
    removed_op_ids = set()

    def _is_dead_end(versioned_blob):
        return not (
            versioned_blob in versioned_external_output
            or (
                len(consumer_map[versioned_blob]) > 0
                and all(x[0] not in removed_op_ids for x in consumer_map[versioned_blob])
            )
        )

    for i, ssa_i in reversed(list(enumerate(ssa))):
        versioned_outputs = ssa_i[1]
        if all(_is_dead_end(outp) for outp in versioned_outputs):
            removed_op_ids.add(i)

    # simply removing those deadend ops should have no effect to external_output
    new_ops = [op for i, op in enumerate(net_def.op) if i not in removed_op_ids]
    del net_def.op[:]
    net_def.op.extend(new_ops)