File size: 1,632 Bytes
18dd6ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import os
import cv2
import numpy as np
from annotator.lama.saicinpainting.training.visualizers.base import BaseVisualizer, visualize_mask_and_images_batch
from annotator.lama.saicinpainting.utils import check_and_warn_input_range
class DirectoryVisualizer(BaseVisualizer):
DEFAULT_KEY_ORDER = 'image predicted_image inpainted'.split(' ')
def __init__(self, outdir, key_order=DEFAULT_KEY_ORDER, max_items_in_batch=10,
last_without_mask=True, rescale_keys=None):
self.outdir = outdir
os.makedirs(self.outdir, exist_ok=True)
self.key_order = key_order
self.max_items_in_batch = max_items_in_batch
self.last_without_mask = last_without_mask
self.rescale_keys = rescale_keys
def __call__(self, epoch_i, batch_i, batch, suffix='', rank=None):
check_and_warn_input_range(batch['image'], 0, 1, 'DirectoryVisualizer target image')
vis_img = visualize_mask_and_images_batch(batch, self.key_order, max_items=self.max_items_in_batch,
last_without_mask=self.last_without_mask,
rescale_keys=self.rescale_keys)
vis_img = np.clip(vis_img * 255, 0, 255).astype('uint8')
curoutdir = os.path.join(self.outdir, f'epoch{epoch_i:04d}{suffix}')
os.makedirs(curoutdir, exist_ok=True)
rank_suffix = f'_r{rank}' if rank is not None else ''
out_fname = os.path.join(curoutdir, f'batch{batch_i:07d}{rank_suffix}.jpg')
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_RGB2BGR)
cv2.imwrite(out_fname, vis_img)
|