File size: 7,570 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F


# compute loss
class compute_loss(nn.Module):
    def __init__(self, args):
        """args.loss_fn can be one of following:
            - L1            - L1 loss (no uncertainty)
            - L2            - L2 loss (no uncertainty)
            - AL            - Angular loss (no uncertainty)
            - NLL_vMF       - NLL of vonMF distribution
            - NLL_ours      - NLL of Angular vonMF distribution
            - UG_NLL_vMF    - NLL of vonMF distribution (+ pixel-wise MLP + uncertainty-guided sampling)
            - UG_NLL_ours   - NLL of Angular vonMF distribution (+ pixel-wise MLP + uncertainty-guided sampling)
        """
        super(compute_loss, self).__init__()
        self.loss_type = args.loss_fn
        if self.loss_type in ['L1', 'L2', 'AL', 'NLL_vMF', 'NLL_ours']:
            self.loss_fn = self.forward_R
        elif self.loss_type in ['UG_NLL_vMF', 'UG_NLL_ours']:
            self.loss_fn = self.forward_UG
        else:
            raise Exception('invalid loss type')

    def forward(self, *args):
        return self.loss_fn(*args)

    def forward_R(self, norm_out, gt_norm, gt_norm_mask):
        pred_norm, pred_kappa = norm_out[:, 0:3, :, :], norm_out[:, 3:, :, :]

        if self.loss_type == 'L1':
            l1 = torch.sum(torch.abs(gt_norm - pred_norm), dim=1, keepdim=True)
            loss = torch.mean(l1[gt_norm_mask])

        elif self.loss_type == 'L2':
            l2 = torch.sum(torch.square(gt_norm - pred_norm), dim=1, keepdim=True)
            loss = torch.mean(l2[gt_norm_mask])

        elif self.loss_type == 'AL':
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            al = torch.acos(dot[valid_mask])
            loss = torch.mean(al)

        elif self.loss_type == 'NLL_vMF':
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            dot = dot[valid_mask]
            kappa = pred_kappa[:, 0, :, :][valid_mask]

            loss_pixelwise = - torch.log(kappa) \
                             - (kappa * (dot - 1)) \
                             + torch.log(1 - torch.exp(- 2 * kappa))
            loss = torch.mean(loss_pixelwise)

        elif self.loss_type == 'NLL_ours':
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            dot = dot[valid_mask]
            kappa = pred_kappa[:, 0, :, :][valid_mask]

            loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
                             + kappa * torch.acos(dot) \
                             + torch.log(1 + torch.exp(-kappa * np.pi))
            loss = torch.mean(loss_pixelwise)

        else:
            raise Exception('invalid loss type')

        return loss


    def forward_UG(self, pred_list, coord_list, gt_norm, gt_norm_mask):
        loss = 0.0
        for (pred, coord) in zip(pred_list, coord_list):
            if coord is None:
                pred = F.interpolate(pred, size=[gt_norm.size(2), gt_norm.size(3)], mode='bilinear', align_corners=True)
                pred_norm, pred_kappa = pred[:, 0:3, :, :], pred[:, 3:, :, :]

                if self.loss_type == 'UG_NLL_vMF':
                    dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

                    valid_mask = gt_norm_mask[:, 0, :, :].float() \
                                * (dot.detach() < 0.999).float() \
                                * (dot.detach() > -0.999).float()
                    valid_mask = valid_mask > 0.5

                    # mask
                    dot = dot[valid_mask]
                    kappa = pred_kappa[:, 0, :, :][valid_mask]

                    loss_pixelwise = - torch.log(kappa) \
                                     - (kappa * (dot - 1)) \
                                     + torch.log(1 - torch.exp(- 2 * kappa))
                    loss = loss + torch.mean(loss_pixelwise)

                elif self.loss_type == 'UG_NLL_ours':
                    dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

                    valid_mask = gt_norm_mask[:, 0, :, :].float() \
                                * (dot.detach() < 0.999).float() \
                                * (dot.detach() > -0.999).float()
                    valid_mask = valid_mask > 0.5

                    dot = dot[valid_mask]
                    kappa = pred_kappa[:, 0, :, :][valid_mask]

                    loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
                                     + kappa * torch.acos(dot) \
                                     + torch.log(1 + torch.exp(-kappa * np.pi))
                    loss = loss + torch.mean(loss_pixelwise)

                else:
                    raise Exception

            else:
                # coord: B, 1, N, 2
                # pred: B, 4, N
                gt_norm_ = F.grid_sample(gt_norm, coord, mode='nearest', align_corners=True)  # (B, 3, 1, N)
                gt_norm_mask_ = F.grid_sample(gt_norm_mask.float(), coord, mode='nearest', align_corners=True)  # (B, 1, 1, N)
                gt_norm_ = gt_norm_[:, :, 0, :]  # (B, 3, N)
                gt_norm_mask_ = gt_norm_mask_[:, :, 0, :] > 0.5  # (B, 1, N)

                pred_norm, pred_kappa = pred[:, 0:3, :], pred[:, 3:, :]

                if self.loss_type == 'UG_NLL_vMF':
                    dot = torch.cosine_similarity(pred_norm, gt_norm_, dim=1)  # (B, N)

                    valid_mask = gt_norm_mask_[:, 0, :].float() \
                                 * (dot.detach() < 0.999).float() \
                                 * (dot.detach() > -0.999).float()
                    valid_mask = valid_mask > 0.5

                    dot = dot[valid_mask]
                    kappa = pred_kappa[:, 0, :][valid_mask]

                    loss_pixelwise = - torch.log(kappa) \
                                     - (kappa * (dot - 1)) \
                                     + torch.log(1 - torch.exp(- 2 * kappa))
                    loss = loss + torch.mean(loss_pixelwise)

                elif self.loss_type == 'UG_NLL_ours':
                    dot = torch.cosine_similarity(pred_norm, gt_norm_, dim=1)  # (B, N)

                    valid_mask = gt_norm_mask_[:, 0, :].float() \
                                 * (dot.detach() < 0.999).float() \
                                 * (dot.detach() > -0.999).float()
                    valid_mask = valid_mask > 0.5

                    dot = dot[valid_mask]
                    kappa = pred_kappa[:, 0, :][valid_mask]

                    loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
                                     + kappa * torch.acos(dot) \
                                     + torch.log(1 + torch.exp(-kappa * np.pi))
                    loss = loss + torch.mean(loss_pixelwise)

                else:
                    raise Exception
        return loss