File size: 13,167 Bytes
18dd6ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from annotator.mmpkg.mmcv.cnn import (ConvModule, build_conv_layer, build_norm_layer,
constant_init, kaiming_init)
from annotator.mmpkg.mmcv.runner import load_checkpoint
from annotator.mmpkg.mmcv.utils.parrots_wrapper import _BatchNorm
from annotator.mmpkg.mmseg.utils import get_root_logger
from ..builder import BACKBONES
class GlobalContextExtractor(nn.Module):
"""Global Context Extractor for CGNet.
This class is employed to refine the joint feature of both local feature
and surrounding context.
Args:
channel (int): Number of input feature channels.
reduction (int): Reductions for global context extractor. Default: 16.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self, channel, reduction=16, with_cp=False):
super(GlobalContextExtractor, self).__init__()
self.channel = channel
self.reduction = reduction
assert reduction >= 1 and channel >= reduction
self.with_cp = with_cp
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel), nn.Sigmoid())
def forward(self, x):
def _inner_forward(x):
num_batch, num_channel = x.size()[:2]
y = self.avg_pool(x).view(num_batch, num_channel)
y = self.fc(y).view(num_batch, num_channel, 1, 1)
return x * y
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
class ContextGuidedBlock(nn.Module):
"""Context Guided Block for CGNet.
This class consists of four components: local feature extractor,
surrounding feature extractor, joint feature extractor and global
context extractor.
Args:
in_channels (int): Number of input feature channels.
out_channels (int): Number of output feature channels.
dilation (int): Dilation rate for surrounding context extractor.
Default: 2.
reduction (int): Reduction for global context extractor. Default: 16.
skip_connect (bool): Add input to output or not. Default: True.
downsample (bool): Downsample the input to 1/2 or not. Default: False.
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='PReLU').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self,
in_channels,
out_channels,
dilation=2,
reduction=16,
skip_connect=True,
downsample=False,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='PReLU'),
with_cp=False):
super(ContextGuidedBlock, self).__init__()
self.with_cp = with_cp
self.downsample = downsample
channels = out_channels if downsample else out_channels // 2
if 'type' in act_cfg and act_cfg['type'] == 'PReLU':
act_cfg['num_parameters'] = channels
kernel_size = 3 if downsample else 1
stride = 2 if downsample else 1
padding = (kernel_size - 1) // 2
self.conv1x1 = ConvModule(
in_channels,
channels,
kernel_size,
stride,
padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.f_loc = build_conv_layer(
conv_cfg,
channels,
channels,
kernel_size=3,
padding=1,
groups=channels,
bias=False)
self.f_sur = build_conv_layer(
conv_cfg,
channels,
channels,
kernel_size=3,
padding=dilation,
groups=channels,
dilation=dilation,
bias=False)
self.bn = build_norm_layer(norm_cfg, 2 * channels)[1]
self.activate = nn.PReLU(2 * channels)
if downsample:
self.bottleneck = build_conv_layer(
conv_cfg,
2 * channels,
out_channels,
kernel_size=1,
bias=False)
self.skip_connect = skip_connect and not downsample
self.f_glo = GlobalContextExtractor(out_channels, reduction, with_cp)
def forward(self, x):
def _inner_forward(x):
out = self.conv1x1(x)
loc = self.f_loc(out)
sur = self.f_sur(out)
joi_feat = torch.cat([loc, sur], 1) # the joint feature
joi_feat = self.bn(joi_feat)
joi_feat = self.activate(joi_feat)
if self.downsample:
joi_feat = self.bottleneck(joi_feat) # channel = out_channels
# f_glo is employed to refine the joint feature
out = self.f_glo(joi_feat)
if self.skip_connect:
return x + out
else:
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
class InputInjection(nn.Module):
"""Downsampling module for CGNet."""
def __init__(self, num_downsampling):
super(InputInjection, self).__init__()
self.pool = nn.ModuleList()
for i in range(num_downsampling):
self.pool.append(nn.AvgPool2d(3, stride=2, padding=1))
def forward(self, x):
for pool in self.pool:
x = pool(x)
return x
@BACKBONES.register_module()
class CGNet(nn.Module):
"""CGNet backbone.
A Light-weight Context Guided Network for Semantic Segmentation
arXiv: https://arxiv.org/abs/1811.08201
Args:
in_channels (int): Number of input image channels. Normally 3.
num_channels (tuple[int]): Numbers of feature channels at each stages.
Default: (32, 64, 128).
num_blocks (tuple[int]): Numbers of CG blocks at stage 1 and stage 2.
Default: (3, 21).
dilations (tuple[int]): Dilation rate for surrounding context
extractors at stage 1 and stage 2. Default: (2, 4).
reductions (tuple[int]): Reductions for global context extractors at
stage 1 and stage 2. Default: (8, 16).
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='PReLU').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self,
in_channels=3,
num_channels=(32, 64, 128),
num_blocks=(3, 21),
dilations=(2, 4),
reductions=(8, 16),
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='PReLU'),
norm_eval=False,
with_cp=False):
super(CGNet, self).__init__()
self.in_channels = in_channels
self.num_channels = num_channels
assert isinstance(self.num_channels, tuple) and len(
self.num_channels) == 3
self.num_blocks = num_blocks
assert isinstance(self.num_blocks, tuple) and len(self.num_blocks) == 2
self.dilations = dilations
assert isinstance(self.dilations, tuple) and len(self.dilations) == 2
self.reductions = reductions
assert isinstance(self.reductions, tuple) and len(self.reductions) == 2
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
if 'type' in self.act_cfg and self.act_cfg['type'] == 'PReLU':
self.act_cfg['num_parameters'] = num_channels[0]
self.norm_eval = norm_eval
self.with_cp = with_cp
cur_channels = in_channels
self.stem = nn.ModuleList()
for i in range(3):
self.stem.append(
ConvModule(
cur_channels,
num_channels[0],
3,
2 if i == 0 else 1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
cur_channels = num_channels[0]
self.inject_2x = InputInjection(1) # down-sample for Input, factor=2
self.inject_4x = InputInjection(2) # down-sample for Input, factor=4
cur_channels += in_channels
self.norm_prelu_0 = nn.Sequential(
build_norm_layer(norm_cfg, cur_channels)[1],
nn.PReLU(cur_channels))
# stage 1
self.level1 = nn.ModuleList()
for i in range(num_blocks[0]):
self.level1.append(
ContextGuidedBlock(
cur_channels if i == 0 else num_channels[1],
num_channels[1],
dilations[0],
reductions[0],
downsample=(i == 0),
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp)) # CG block
cur_channels = 2 * num_channels[1] + in_channels
self.norm_prelu_1 = nn.Sequential(
build_norm_layer(norm_cfg, cur_channels)[1],
nn.PReLU(cur_channels))
# stage 2
self.level2 = nn.ModuleList()
for i in range(num_blocks[1]):
self.level2.append(
ContextGuidedBlock(
cur_channels if i == 0 else num_channels[2],
num_channels[2],
dilations[1],
reductions[1],
downsample=(i == 0),
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp)) # CG block
cur_channels = 2 * num_channels[2]
self.norm_prelu_2 = nn.Sequential(
build_norm_layer(norm_cfg, cur_channels)[1],
nn.PReLU(cur_channels))
def forward(self, x):
output = []
# stage 0
inp_2x = self.inject_2x(x)
inp_4x = self.inject_4x(x)
for layer in self.stem:
x = layer(x)
x = self.norm_prelu_0(torch.cat([x, inp_2x], 1))
output.append(x)
# stage 1
for i, layer in enumerate(self.level1):
x = layer(x)
if i == 0:
down1 = x
x = self.norm_prelu_1(torch.cat([x, down1, inp_4x], 1))
output.append(x)
# stage 2
for i, layer in enumerate(self.level2):
x = layer(x)
if i == 0:
down2 = x
x = self.norm_prelu_2(torch.cat([down2, x], 1))
output.append(x)
return output
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.Linear)):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
elif isinstance(m, nn.PReLU):
constant_init(m, 0)
else:
raise TypeError('pretrained must be a str or None')
def train(self, mode=True):
"""Convert the model into training mode will keeping the normalization
layer freezed."""
super(CGNet, self).train(mode)
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
|