File size: 5,703 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torch.nn as nn
import torch.nn.functional as F


########################################################################################################################


# Upsample + BatchNorm
class UpSampleBN(nn.Module):
    def __init__(self, skip_input, output_features):
        super(UpSampleBN, self).__init__()

        self._net = nn.Sequential(nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1),
                                  nn.BatchNorm2d(output_features),
                                  nn.LeakyReLU(),
                                  nn.Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1),
                                  nn.BatchNorm2d(output_features),
                                  nn.LeakyReLU())

    def forward(self, x, concat_with):
        up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
        f = torch.cat([up_x, concat_with], dim=1)
        return self._net(f)


# Upsample + GroupNorm + Weight Standardization
class UpSampleGN(nn.Module):
    def __init__(self, skip_input, output_features):
        super(UpSampleGN, self).__init__()

        self._net = nn.Sequential(Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1),
                                  nn.GroupNorm(8, output_features),
                                  nn.LeakyReLU(),
                                  Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1),
                                  nn.GroupNorm(8, output_features),
                                  nn.LeakyReLU())

    def forward(self, x, concat_with):
        up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
        f = torch.cat([up_x, concat_with], dim=1)
        return self._net(f)


# Conv2d with weight standardization
class Conv2d(nn.Conv2d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True):
        super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride,
                 padding, dilation, groups, bias)

    def forward(self, x):
        weight = self.weight
        weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2,
                                  keepdim=True).mean(dim=3, keepdim=True)
        weight = weight - weight_mean
        std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
        weight = weight / std.expand_as(weight)
        return F.conv2d(x, weight, self.bias, self.stride,
                        self.padding, self.dilation, self.groups)


# normalize
def norm_normalize(norm_out):
    min_kappa = 0.01
    norm_x, norm_y, norm_z, kappa = torch.split(norm_out, 1, dim=1)
    norm = torch.sqrt(norm_x ** 2.0 + norm_y ** 2.0 + norm_z ** 2.0) + 1e-10
    kappa = F.elu(kappa) + 1.0 + min_kappa
    final_out = torch.cat([norm_x / norm, norm_y / norm, norm_z / norm, kappa], dim=1)
    return final_out


# uncertainty-guided sampling (only used during training)
@torch.no_grad()
def sample_points(init_normal, gt_norm_mask, sampling_ratio, beta):
    device = init_normal.device
    B, _, H, W = init_normal.shape
    N = int(sampling_ratio * H * W)
    beta = beta

    # uncertainty map
    uncertainty_map = -1 * init_normal[:, 3, :, :]  # B, H, W

    # gt_invalid_mask (B, H, W)
    if gt_norm_mask is not None:
        gt_invalid_mask = F.interpolate(gt_norm_mask.float(), size=[H, W], mode='nearest')
        gt_invalid_mask = gt_invalid_mask[:, 0, :, :] < 0.5
        uncertainty_map[gt_invalid_mask] = -1e4

    # (B, H*W)
    _, idx = uncertainty_map.view(B, -1).sort(1, descending=True)

    # importance sampling
    if int(beta * N) > 0:
        importance = idx[:, :int(beta * N)]    # B, beta*N

        # remaining
        remaining = idx[:, int(beta * N):]     # B, H*W - beta*N

        # coverage
        num_coverage = N - int(beta * N)

        if num_coverage <= 0:
            samples = importance
        else:
            coverage_list = []
            for i in range(B):
                idx_c = torch.randperm(remaining.size()[1])    # shuffles "H*W - beta*N"
                coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1))     # 1, N-beta*N
            coverage = torch.cat(coverage_list, dim=0)                                      # B, N-beta*N
            samples = torch.cat((importance, coverage), dim=1)                              # B, N

    else:
        # remaining
        remaining = idx[:, :]  # B, H*W

        # coverage
        num_coverage = N

        coverage_list = []
        for i in range(B):
            idx_c = torch.randperm(remaining.size()[1])  # shuffles "H*W - beta*N"
            coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1))  # 1, N-beta*N
        coverage = torch.cat(coverage_list, dim=0)  # B, N-beta*N
        samples = coverage

    # point coordinates
    rows_int = samples // W         # 0 for first row, H-1 for last row
    rows_float = rows_int / float(H-1)         # 0 to 1.0
    rows_float = (rows_float * 2.0) - 1.0       # -1.0 to 1.0

    cols_int = samples % W          # 0 for first column, W-1 for last column
    cols_float = cols_int / float(W-1)         # 0 to 1.0
    cols_float = (cols_float * 2.0) - 1.0       # -1.0 to 1.0

    point_coords = torch.zeros(B, 1, N, 2)
    point_coords[:, 0, :, 0] = cols_float             # x coord
    point_coords[:, 0, :, 1] = rows_float             # y coord
    point_coords = point_coords.to(device)
    return point_coords, rows_int, cols_int