File size: 22,432 Bytes
18dd6ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import warnings
from math import inf
import torch.distributed as dist
from torch.nn.modules.batchnorm import _BatchNorm
from torch.utils.data import DataLoader
from annotator.mmpkg.mmcv.fileio import FileClient
from annotator.mmpkg.mmcv.utils import is_seq_of
from .hook import Hook
from .logger import LoggerHook
class EvalHook(Hook):
"""Non-Distributed evaluation hook.
This hook will regularly perform evaluation in a given interval when
performing in non-distributed environment.
Args:
dataloader (DataLoader): A PyTorch dataloader, whose dataset has
implemented ``evaluate`` function.
start (int | None, optional): Evaluation starting epoch. It enables
evaluation before the training starts if ``start`` <= the resuming
epoch. If None, whether to evaluate is merely decided by
``interval``. Default: None.
interval (int): Evaluation interval. Default: 1.
by_epoch (bool): Determine perform evaluation by epoch or by iteration.
If set to True, it will perform by epoch. Otherwise, by iteration.
Default: True.
save_best (str, optional): If a metric is specified, it would measure
the best checkpoint during evaluation. The information about best
checkpoint would be saved in ``runner.meta['hook_msgs']`` to keep
best score value and best checkpoint path, which will be also
loaded when resume checkpoint. Options are the evaluation metrics
on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox
detection and instance segmentation. ``AR@100`` for proposal
recall. If ``save_best`` is ``auto``, the first key of the returned
``OrderedDict`` result will be used. Default: None.
rule (str | None, optional): Comparison rule for best score. If set to
None, it will infer a reasonable rule. Keys such as 'acc', 'top'
.etc will be inferred by 'greater' rule. Keys contain 'loss' will
be inferred by 'less' rule. Options are 'greater', 'less', None.
Default: None.
test_fn (callable, optional): test a model with samples from a
dataloader, and return the test results. If ``None``, the default
test function ``mmcv.engine.single_gpu_test`` will be used.
(default: ``None``)
greater_keys (List[str] | None, optional): Metric keys that will be
inferred by 'greater' comparison rule. If ``None``,
_default_greater_keys will be used. (default: ``None``)
less_keys (List[str] | None, optional): Metric keys that will be
inferred by 'less' comparison rule. If ``None``, _default_less_keys
will be used. (default: ``None``)
out_dir (str, optional): The root directory to save checkpoints. If not
specified, `runner.work_dir` will be used by default. If specified,
the `out_dir` will be the concatenation of `out_dir` and the last
level directory of `runner.work_dir`.
`New in version 1.3.16.`
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmcv.fileio.FileClient` for details. Default: None.
`New in version 1.3.16.`
**eval_kwargs: Evaluation arguments fed into the evaluate function of
the dataset.
Notes:
If new arguments are added for EvalHook, tools/test.py,
tools/eval_metric.py may be affected.
"""
# Since the key for determine greater or less is related to the downstream
# tasks, downstream repos may need to overwrite the following inner
# variable accordingly.
rule_map = {'greater': lambda x, y: x > y, 'less': lambda x, y: x < y}
init_value_map = {'greater': -inf, 'less': inf}
_default_greater_keys = [
'acc', 'top', 'AR@', 'auc', 'precision', 'mAP', 'mDice', 'mIoU',
'mAcc', 'aAcc'
]
_default_less_keys = ['loss']
def __init__(self,
dataloader,
start=None,
interval=1,
by_epoch=True,
save_best=None,
rule=None,
test_fn=None,
greater_keys=None,
less_keys=None,
out_dir=None,
file_client_args=None,
**eval_kwargs):
if not isinstance(dataloader, DataLoader):
raise TypeError(f'dataloader must be a pytorch DataLoader, '
f'but got {type(dataloader)}')
if interval <= 0:
raise ValueError(f'interval must be a positive number, '
f'but got {interval}')
assert isinstance(by_epoch, bool), '``by_epoch`` should be a boolean'
if start is not None and start < 0:
raise ValueError(f'The evaluation start epoch {start} is smaller '
f'than 0')
self.dataloader = dataloader
self.interval = interval
self.start = start
self.by_epoch = by_epoch
assert isinstance(save_best, str) or save_best is None, \
'""save_best"" should be a str or None ' \
f'rather than {type(save_best)}'
self.save_best = save_best
self.eval_kwargs = eval_kwargs
self.initial_flag = True
if test_fn is None:
from annotator.mmpkg.mmcv.engine import single_gpu_test
self.test_fn = single_gpu_test
else:
self.test_fn = test_fn
if greater_keys is None:
self.greater_keys = self._default_greater_keys
else:
if not isinstance(greater_keys, (list, tuple)):
greater_keys = (greater_keys, )
assert is_seq_of(greater_keys, str)
self.greater_keys = greater_keys
if less_keys is None:
self.less_keys = self._default_less_keys
else:
if not isinstance(less_keys, (list, tuple)):
less_keys = (less_keys, )
assert is_seq_of(less_keys, str)
self.less_keys = less_keys
if self.save_best is not None:
self.best_ckpt_path = None
self._init_rule(rule, self.save_best)
self.out_dir = out_dir
self.file_client_args = file_client_args
def _init_rule(self, rule, key_indicator):
"""Initialize rule, key_indicator, comparison_func, and best score.
Here is the rule to determine which rule is used for key indicator
when the rule is not specific (note that the key indicator matching
is case-insensitive):
1. If the key indicator is in ``self.greater_keys``, the rule will be
specified as 'greater'.
2. Or if the key indicator is in ``self.less_keys``, the rule will be
specified as 'less'.
3. Or if the key indicator is equal to the substring in any one item
in ``self.greater_keys``, the rule will be specified as 'greater'.
4. Or if the key indicator is equal to the substring in any one item
in ``self.less_keys``, the rule will be specified as 'less'.
Args:
rule (str | None): Comparison rule for best score.
key_indicator (str | None): Key indicator to determine the
comparison rule.
"""
if rule not in self.rule_map and rule is not None:
raise KeyError(f'rule must be greater, less or None, '
f'but got {rule}.')
if rule is None:
if key_indicator != 'auto':
# `_lc` here means we use the lower case of keys for
# case-insensitive matching
key_indicator_lc = key_indicator.lower()
greater_keys = [key.lower() for key in self.greater_keys]
less_keys = [key.lower() for key in self.less_keys]
if key_indicator_lc in greater_keys:
rule = 'greater'
elif key_indicator_lc in less_keys:
rule = 'less'
elif any(key in key_indicator_lc for key in greater_keys):
rule = 'greater'
elif any(key in key_indicator_lc for key in less_keys):
rule = 'less'
else:
raise ValueError(f'Cannot infer the rule for key '
f'{key_indicator}, thus a specific rule '
f'must be specified.')
self.rule = rule
self.key_indicator = key_indicator
if self.rule is not None:
self.compare_func = self.rule_map[self.rule]
def before_run(self, runner):
if not self.out_dir:
self.out_dir = runner.work_dir
self.file_client = FileClient.infer_client(self.file_client_args,
self.out_dir)
# if `self.out_dir` is not equal to `runner.work_dir`, it means that
# `self.out_dir` is set so the final `self.out_dir` is the
# concatenation of `self.out_dir` and the last level directory of
# `runner.work_dir`
if self.out_dir != runner.work_dir:
basename = osp.basename(runner.work_dir.rstrip(osp.sep))
self.out_dir = self.file_client.join_path(self.out_dir, basename)
runner.logger.info(
(f'The best checkpoint will be saved to {self.out_dir} by '
f'{self.file_client.name}'))
if self.save_best is not None:
if runner.meta is None:
warnings.warn('runner.meta is None. Creating an empty one.')
runner.meta = dict()
runner.meta.setdefault('hook_msgs', dict())
self.best_ckpt_path = runner.meta['hook_msgs'].get(
'best_ckpt', None)
def before_train_iter(self, runner):
"""Evaluate the model only at the start of training by iteration."""
if self.by_epoch or not self.initial_flag:
return
if self.start is not None and runner.iter >= self.start:
self.after_train_iter(runner)
self.initial_flag = False
def before_train_epoch(self, runner):
"""Evaluate the model only at the start of training by epoch."""
if not (self.by_epoch and self.initial_flag):
return
if self.start is not None and runner.epoch >= self.start:
self.after_train_epoch(runner)
self.initial_flag = False
def after_train_iter(self, runner):
"""Called after every training iter to evaluate the results."""
if not self.by_epoch and self._should_evaluate(runner):
# Because the priority of EvalHook is higher than LoggerHook, the
# training log and the evaluating log are mixed. Therefore,
# we need to dump the training log and clear it before evaluating
# log is generated. In addition, this problem will only appear in
# `IterBasedRunner` whose `self.by_epoch` is False, because
# `EpochBasedRunner` whose `self.by_epoch` is True calls
# `_do_evaluate` in `after_train_epoch` stage, and at this stage
# the training log has been printed, so it will not cause any
# problem. more details at
# https://github.com/open-mmlab/mmsegmentation/issues/694
for hook in runner._hooks:
if isinstance(hook, LoggerHook):
hook.after_train_iter(runner)
runner.log_buffer.clear()
self._do_evaluate(runner)
def after_train_epoch(self, runner):
"""Called after every training epoch to evaluate the results."""
if self.by_epoch and self._should_evaluate(runner):
self._do_evaluate(runner)
def _do_evaluate(self, runner):
"""perform evaluation and save ckpt."""
results = self.test_fn(runner.model, self.dataloader)
runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
key_score = self.evaluate(runner, results)
# the key_score may be `None` so it needs to skip the action to save
# the best checkpoint
if self.save_best and key_score:
self._save_ckpt(runner, key_score)
def _should_evaluate(self, runner):
"""Judge whether to perform evaluation.
Here is the rule to judge whether to perform evaluation:
1. It will not perform evaluation during the epoch/iteration interval,
which is determined by ``self.interval``.
2. It will not perform evaluation if the start time is larger than
current time.
3. It will not perform evaluation when current time is larger than
the start time but during epoch/iteration interval.
Returns:
bool: The flag indicating whether to perform evaluation.
"""
if self.by_epoch:
current = runner.epoch
check_time = self.every_n_epochs
else:
current = runner.iter
check_time = self.every_n_iters
if self.start is None:
if not check_time(runner, self.interval):
# No evaluation during the interval.
return False
elif (current + 1) < self.start:
# No evaluation if start is larger than the current time.
return False
else:
# Evaluation only at epochs/iters 3, 5, 7...
# if start==3 and interval==2
if (current + 1 - self.start) % self.interval:
return False
return True
def _save_ckpt(self, runner, key_score):
"""Save the best checkpoint.
It will compare the score according to the compare function, write
related information (best score, best checkpoint path) and save the
best checkpoint into ``work_dir``.
"""
if self.by_epoch:
current = f'epoch_{runner.epoch + 1}'
cur_type, cur_time = 'epoch', runner.epoch + 1
else:
current = f'iter_{runner.iter + 1}'
cur_type, cur_time = 'iter', runner.iter + 1
best_score = runner.meta['hook_msgs'].get(
'best_score', self.init_value_map[self.rule])
if self.compare_func(key_score, best_score):
best_score = key_score
runner.meta['hook_msgs']['best_score'] = best_score
if self.best_ckpt_path and self.file_client.isfile(
self.best_ckpt_path):
self.file_client.remove(self.best_ckpt_path)
runner.logger.info(
(f'The previous best checkpoint {self.best_ckpt_path} was '
'removed'))
best_ckpt_name = f'best_{self.key_indicator}_{current}.pth'
self.best_ckpt_path = self.file_client.join_path(
self.out_dir, best_ckpt_name)
runner.meta['hook_msgs']['best_ckpt'] = self.best_ckpt_path
runner.save_checkpoint(
self.out_dir, best_ckpt_name, create_symlink=False)
runner.logger.info(
f'Now best checkpoint is saved as {best_ckpt_name}.')
runner.logger.info(
f'Best {self.key_indicator} is {best_score:0.4f} '
f'at {cur_time} {cur_type}.')
def evaluate(self, runner, results):
"""Evaluate the results.
Args:
runner (:obj:`mmcv.Runner`): The underlined training runner.
results (list): Output results.
"""
eval_res = self.dataloader.dataset.evaluate(
results, logger=runner.logger, **self.eval_kwargs)
for name, val in eval_res.items():
runner.log_buffer.output[name] = val
runner.log_buffer.ready = True
if self.save_best is not None:
# If the performance of model is pool, the `eval_res` may be an
# empty dict and it will raise exception when `self.save_best` is
# not None. More details at
# https://github.com/open-mmlab/mmdetection/issues/6265.
if not eval_res:
warnings.warn(
'Since `eval_res` is an empty dict, the behavior to save '
'the best checkpoint will be skipped in this evaluation.')
return None
if self.key_indicator == 'auto':
# infer from eval_results
self._init_rule(self.rule, list(eval_res.keys())[0])
return eval_res[self.key_indicator]
return None
class DistEvalHook(EvalHook):
"""Distributed evaluation hook.
This hook will regularly perform evaluation in a given interval when
performing in distributed environment.
Args:
dataloader (DataLoader): A PyTorch dataloader, whose dataset has
implemented ``evaluate`` function.
start (int | None, optional): Evaluation starting epoch. It enables
evaluation before the training starts if ``start`` <= the resuming
epoch. If None, whether to evaluate is merely decided by
``interval``. Default: None.
interval (int): Evaluation interval. Default: 1.
by_epoch (bool): Determine perform evaluation by epoch or by iteration.
If set to True, it will perform by epoch. Otherwise, by iteration.
default: True.
save_best (str, optional): If a metric is specified, it would measure
the best checkpoint during evaluation. The information about best
checkpoint would be saved in ``runner.meta['hook_msgs']`` to keep
best score value and best checkpoint path, which will be also
loaded when resume checkpoint. Options are the evaluation metrics
on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox
detection and instance segmentation. ``AR@100`` for proposal
recall. If ``save_best`` is ``auto``, the first key of the returned
``OrderedDict`` result will be used. Default: None.
rule (str | None, optional): Comparison rule for best score. If set to
None, it will infer a reasonable rule. Keys such as 'acc', 'top'
.etc will be inferred by 'greater' rule. Keys contain 'loss' will
be inferred by 'less' rule. Options are 'greater', 'less', None.
Default: None.
test_fn (callable, optional): test a model with samples from a
dataloader in a multi-gpu manner, and return the test results. If
``None``, the default test function ``mmcv.engine.multi_gpu_test``
will be used. (default: ``None``)
tmpdir (str | None): Temporary directory to save the results of all
processes. Default: None.
gpu_collect (bool): Whether to use gpu or cpu to collect results.
Default: False.
broadcast_bn_buffer (bool): Whether to broadcast the
buffer(running_mean and running_var) of rank 0 to other rank
before evaluation. Default: True.
out_dir (str, optional): The root directory to save checkpoints. If not
specified, `runner.work_dir` will be used by default. If specified,
the `out_dir` will be the concatenation of `out_dir` and the last
level directory of `runner.work_dir`.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmcv.fileio.FileClient` for details. Default: None.
**eval_kwargs: Evaluation arguments fed into the evaluate function of
the dataset.
"""
def __init__(self,
dataloader,
start=None,
interval=1,
by_epoch=True,
save_best=None,
rule=None,
test_fn=None,
greater_keys=None,
less_keys=None,
broadcast_bn_buffer=True,
tmpdir=None,
gpu_collect=False,
out_dir=None,
file_client_args=None,
**eval_kwargs):
if test_fn is None:
from annotator.mmpkg.mmcv.engine import multi_gpu_test
test_fn = multi_gpu_test
super().__init__(
dataloader,
start=start,
interval=interval,
by_epoch=by_epoch,
save_best=save_best,
rule=rule,
test_fn=test_fn,
greater_keys=greater_keys,
less_keys=less_keys,
out_dir=out_dir,
file_client_args=file_client_args,
**eval_kwargs)
self.broadcast_bn_buffer = broadcast_bn_buffer
self.tmpdir = tmpdir
self.gpu_collect = gpu_collect
def _do_evaluate(self, runner):
"""perform evaluation and save ckpt."""
# Synchronization of BatchNorm's buffer (running_mean
# and running_var) is not supported in the DDP of pytorch,
# which may cause the inconsistent performance of models in
# different ranks, so we broadcast BatchNorm's buffers
# of rank 0 to other ranks to avoid this.
if self.broadcast_bn_buffer:
model = runner.model
for name, module in model.named_modules():
if isinstance(module,
_BatchNorm) and module.track_running_stats:
dist.broadcast(module.running_var, 0)
dist.broadcast(module.running_mean, 0)
tmpdir = self.tmpdir
if tmpdir is None:
tmpdir = osp.join(runner.work_dir, '.eval_hook')
results = self.test_fn(
runner.model,
self.dataloader,
tmpdir=tmpdir,
gpu_collect=self.gpu_collect)
if runner.rank == 0:
print('\n')
runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
key_score = self.evaluate(runner, results)
# the key_score may be `None` so it needs to skip the action to
# save the best checkpoint
if self.save_best and key_score:
self._save_ckpt(runner, key_score)
|