File size: 15,106 Bytes
18dd6ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import itertools
import json
import logging
import os
import pickle
from collections import OrderedDict
import torch
import annotator.oneformer.detectron2.utils.comm as comm
from annotator.oneformer.detectron2.config import CfgNode
from annotator.oneformer.detectron2.data import MetadataCatalog
from annotator.oneformer.detectron2.structures import Boxes, BoxMode, pairwise_iou
from annotator.oneformer.detectron2.utils.file_io import PathManager
from annotator.oneformer.detectron2.utils.logger import create_small_table
from .coco_evaluation import instances_to_coco_json
from .evaluator import DatasetEvaluator
class LVISEvaluator(DatasetEvaluator):
"""
Evaluate object proposal and instance detection/segmentation outputs using
LVIS's metrics and evaluation API.
"""
def __init__(
self,
dataset_name,
tasks=None,
distributed=True,
output_dir=None,
*,
max_dets_per_image=None,
):
"""
Args:
dataset_name (str): name of the dataset to be evaluated.
It must have the following corresponding metadata:
"json_file": the path to the LVIS format annotation
tasks (tuple[str]): tasks that can be evaluated under the given
configuration. A task is one of "bbox", "segm".
By default, will infer this automatically from predictions.
distributed (True): if True, will collect results from all ranks for evaluation.
Otherwise, will evaluate the results in the current process.
output_dir (str): optional, an output directory to dump results.
max_dets_per_image (None or int): limit on maximum detections per image in evaluating AP
This limit, by default of the LVIS dataset, is 300.
"""
from lvis import LVIS
self._logger = logging.getLogger(__name__)
if tasks is not None and isinstance(tasks, CfgNode):
self._logger.warn(
"COCO Evaluator instantiated using config, this is deprecated behavior."
" Please pass in explicit arguments instead."
)
self._tasks = None # Infering it from predictions should be better
else:
self._tasks = tasks
self._distributed = distributed
self._output_dir = output_dir
self._max_dets_per_image = max_dets_per_image
self._cpu_device = torch.device("cpu")
self._metadata = MetadataCatalog.get(dataset_name)
json_file = PathManager.get_local_path(self._metadata.json_file)
self._lvis_api = LVIS(json_file)
# Test set json files do not contain annotations (evaluation must be
# performed using the LVIS evaluation server).
self._do_evaluation = len(self._lvis_api.get_ann_ids()) > 0
def reset(self):
self._predictions = []
def process(self, inputs, outputs):
"""
Args:
inputs: the inputs to a LVIS model (e.g., GeneralizedRCNN).
It is a list of dict. Each dict corresponds to an image and
contains keys like "height", "width", "file_name", "image_id".
outputs: the outputs of a LVIS model. It is a list of dicts with key
"instances" that contains :class:`Instances`.
"""
for input, output in zip(inputs, outputs):
prediction = {"image_id": input["image_id"]}
if "instances" in output:
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = instances_to_coco_json(instances, input["image_id"])
if "proposals" in output:
prediction["proposals"] = output["proposals"].to(self._cpu_device)
self._predictions.append(prediction)
def evaluate(self):
if self._distributed:
comm.synchronize()
predictions = comm.gather(self._predictions, dst=0)
predictions = list(itertools.chain(*predictions))
if not comm.is_main_process():
return
else:
predictions = self._predictions
if len(predictions) == 0:
self._logger.warning("[LVISEvaluator] Did not receive valid predictions.")
return {}
if self._output_dir:
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(self._output_dir, "instances_predictions.pth")
with PathManager.open(file_path, "wb") as f:
torch.save(predictions, f)
self._results = OrderedDict()
if "proposals" in predictions[0]:
self._eval_box_proposals(predictions)
if "instances" in predictions[0]:
self._eval_predictions(predictions)
# Copy so the caller can do whatever with results
return copy.deepcopy(self._results)
def _tasks_from_predictions(self, predictions):
for pred in predictions:
if "segmentation" in pred:
return ("bbox", "segm")
return ("bbox",)
def _eval_predictions(self, predictions):
"""
Evaluate predictions. Fill self._results with the metrics of the tasks.
Args:
predictions (list[dict]): list of outputs from the model
"""
self._logger.info("Preparing results in the LVIS format ...")
lvis_results = list(itertools.chain(*[x["instances"] for x in predictions]))
tasks = self._tasks or self._tasks_from_predictions(lvis_results)
# LVIS evaluator can be used to evaluate results for COCO dataset categories.
# In this case `_metadata` variable will have a field with COCO-specific category mapping.
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
reverse_id_mapping = {
v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
}
for result in lvis_results:
result["category_id"] = reverse_id_mapping[result["category_id"]]
else:
# unmap the category ids for LVIS (from 0-indexed to 1-indexed)
for result in lvis_results:
result["category_id"] += 1
if self._output_dir:
file_path = os.path.join(self._output_dir, "lvis_instances_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(lvis_results))
f.flush()
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info("Evaluating predictions ...")
for task in sorted(tasks):
res = _evaluate_predictions_on_lvis(
self._lvis_api,
lvis_results,
task,
max_dets_per_image=self._max_dets_per_image,
class_names=self._metadata.get("thing_classes"),
)
self._results[task] = res
def _eval_box_proposals(self, predictions):
"""
Evaluate the box proposals in predictions.
Fill self._results with the metrics for "box_proposals" task.
"""
if self._output_dir:
# Saving generated box proposals to file.
# Predicted box_proposals are in XYXY_ABS mode.
bbox_mode = BoxMode.XYXY_ABS.value
ids, boxes, objectness_logits = [], [], []
for prediction in predictions:
ids.append(prediction["image_id"])
boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy())
objectness_logits.append(prediction["proposals"].objectness_logits.numpy())
proposal_data = {
"boxes": boxes,
"objectness_logits": objectness_logits,
"ids": ids,
"bbox_mode": bbox_mode,
}
with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f:
pickle.dump(proposal_data, f)
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info("Evaluating bbox proposals ...")
res = {}
areas = {"all": "", "small": "s", "medium": "m", "large": "l"}
for limit in [100, 1000]:
for area, suffix in areas.items():
stats = _evaluate_box_proposals(predictions, self._lvis_api, area=area, limit=limit)
key = "AR{}@{:d}".format(suffix, limit)
res[key] = float(stats["ar"].item() * 100)
self._logger.info("Proposal metrics: \n" + create_small_table(res))
self._results["box_proposals"] = res
# inspired from Detectron:
# https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa
def _evaluate_box_proposals(dataset_predictions, lvis_api, thresholds=None, area="all", limit=None):
"""
Evaluate detection proposal recall metrics. This function is a much
faster alternative to the official LVIS API recall evaluation code. However,
it produces slightly different results.
"""
# Record max overlap value for each gt box
# Return vector of overlap values
areas = {
"all": 0,
"small": 1,
"medium": 2,
"large": 3,
"96-128": 4,
"128-256": 5,
"256-512": 6,
"512-inf": 7,
}
area_ranges = [
[0**2, 1e5**2], # all
[0**2, 32**2], # small
[32**2, 96**2], # medium
[96**2, 1e5**2], # large
[96**2, 128**2], # 96-128
[128**2, 256**2], # 128-256
[256**2, 512**2], # 256-512
[512**2, 1e5**2],
] # 512-inf
assert area in areas, "Unknown area range: {}".format(area)
area_range = area_ranges[areas[area]]
gt_overlaps = []
num_pos = 0
for prediction_dict in dataset_predictions:
predictions = prediction_dict["proposals"]
# sort predictions in descending order
# TODO maybe remove this and make it explicit in the documentation
inds = predictions.objectness_logits.sort(descending=True)[1]
predictions = predictions[inds]
ann_ids = lvis_api.get_ann_ids(img_ids=[prediction_dict["image_id"]])
anno = lvis_api.load_anns(ann_ids)
gt_boxes = [
BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) for obj in anno
]
gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes
gt_boxes = Boxes(gt_boxes)
gt_areas = torch.as_tensor([obj["area"] for obj in anno])
if len(gt_boxes) == 0 or len(predictions) == 0:
continue
valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1])
gt_boxes = gt_boxes[valid_gt_inds]
num_pos += len(gt_boxes)
if len(gt_boxes) == 0:
continue
if limit is not None and len(predictions) > limit:
predictions = predictions[:limit]
overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes)
_gt_overlaps = torch.zeros(len(gt_boxes))
for j in range(min(len(predictions), len(gt_boxes))):
# find which proposal box maximally covers each gt box
# and get the iou amount of coverage for each gt box
max_overlaps, argmax_overlaps = overlaps.max(dim=0)
# find which gt box is 'best' covered (i.e. 'best' = most iou)
gt_ovr, gt_ind = max_overlaps.max(dim=0)
assert gt_ovr >= 0
# find the proposal box that covers the best covered gt box
box_ind = argmax_overlaps[gt_ind]
# record the iou coverage of this gt box
_gt_overlaps[j] = overlaps[box_ind, gt_ind]
assert _gt_overlaps[j] == gt_ovr
# mark the proposal box and the gt box as used
overlaps[box_ind, :] = -1
overlaps[:, gt_ind] = -1
# append recorded iou coverage level
gt_overlaps.append(_gt_overlaps)
gt_overlaps = (
torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32)
)
gt_overlaps, _ = torch.sort(gt_overlaps)
if thresholds is None:
step = 0.05
thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
recalls = torch.zeros_like(thresholds)
# compute recall for each iou threshold
for i, t in enumerate(thresholds):
recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
# ar = 2 * np.trapz(recalls, thresholds)
ar = recalls.mean()
return {
"ar": ar,
"recalls": recalls,
"thresholds": thresholds,
"gt_overlaps": gt_overlaps,
"num_pos": num_pos,
}
def _evaluate_predictions_on_lvis(
lvis_gt, lvis_results, iou_type, max_dets_per_image=None, class_names=None
):
"""
Args:
iou_type (str):
max_dets_per_image (None or int): limit on maximum detections per image in evaluating AP
This limit, by default of the LVIS dataset, is 300.
class_names (None or list[str]): if provided, will use it to predict
per-category AP.
Returns:
a dict of {metric name: score}
"""
metrics = {
"bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl", "APr", "APc", "APf"],
"segm": ["AP", "AP50", "AP75", "APs", "APm", "APl", "APr", "APc", "APf"],
}[iou_type]
logger = logging.getLogger(__name__)
if len(lvis_results) == 0: # TODO: check if needed
logger.warn("No predictions from the model!")
return {metric: float("nan") for metric in metrics}
if iou_type == "segm":
lvis_results = copy.deepcopy(lvis_results)
# When evaluating mask AP, if the results contain bbox, LVIS API will
# use the box area as the area of the instance, instead of the mask area.
# This leads to a different definition of small/medium/large.
# We remove the bbox field to let mask AP use mask area.
for c in lvis_results:
c.pop("bbox", None)
if max_dets_per_image is None:
max_dets_per_image = 300 # Default for LVIS dataset
from lvis import LVISEval, LVISResults
logger.info(f"Evaluating with max detections per image = {max_dets_per_image}")
lvis_results = LVISResults(lvis_gt, lvis_results, max_dets=max_dets_per_image)
lvis_eval = LVISEval(lvis_gt, lvis_results, iou_type)
lvis_eval.run()
lvis_eval.print_results()
# Pull the standard metrics from the LVIS results
results = lvis_eval.get_results()
results = {metric: float(results[metric] * 100) for metric in metrics}
logger.info("Evaluation results for {}: \n".format(iou_type) + create_small_table(results))
return results
|