File size: 6,719 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import numpy as np
from PIL import Image

import torch
import torch.nn as nn
import torch.nn.functional as F

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt



# convert arg line to args
def convert_arg_line_to_args(arg_line):
    for arg in arg_line.split():
        if not arg.strip():
            continue
        yield str(arg)


# save args
def save_args(args, filename):
    with open(filename, 'w') as f:
        for arg in vars(args):
            f.write('{}: {}\n'.format(arg, getattr(args, arg)))


# concatenate images
def concat_image(image_path_list, concat_image_path):
    imgs = [Image.open(i).convert("RGB").resize((640, 480), resample=Image.BILINEAR) for i in image_path_list]
    imgs_list = []
    for i in range(len(imgs)):
        img = imgs[i]
        imgs_list.append(np.asarray(img))

        H, W, _ = np.asarray(img).shape
        imgs_list.append(255 * np.ones((H, 20, 3)).astype('uint8'))

    imgs_comb = np.hstack(imgs_list[:-1])
    imgs_comb = Image.fromarray(imgs_comb)
    imgs_comb.save(concat_image_path)


# load model
def load_checkpoint(fpath, model):
    ckpt = torch.load(fpath, map_location='cpu')['model']

    load_dict = {}
    for k, v in ckpt.items():
        if k.startswith('module.'):
            k_ = k.replace('module.', '')
            load_dict[k_] = v
        else:
            load_dict[k] = v

    model.load_state_dict(load_dict)
    return model


# compute normal errors
def compute_normal_errors(total_normal_errors):
    metrics = {
        'mean': np.average(total_normal_errors),
        'median': np.median(total_normal_errors),
        'rmse': np.sqrt(np.sum(total_normal_errors * total_normal_errors) / total_normal_errors.shape),
        'a1': 100.0 * (np.sum(total_normal_errors < 5) / total_normal_errors.shape[0]),
        'a2': 100.0 * (np.sum(total_normal_errors < 7.5) / total_normal_errors.shape[0]),
        'a3': 100.0 * (np.sum(total_normal_errors < 11.25) / total_normal_errors.shape[0]),
        'a4': 100.0 * (np.sum(total_normal_errors < 22.5) / total_normal_errors.shape[0]),
        'a5': 100.0 * (np.sum(total_normal_errors < 30) / total_normal_errors.shape[0])
    }
    return metrics


# log normal errors
def log_normal_errors(metrics, where_to_write, first_line):
    print(first_line)
    print("mean median rmse 5 7.5 11.25 22.5 30")
    print("%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f" % (
        metrics['mean'], metrics['median'], metrics['rmse'],
        metrics['a1'], metrics['a2'], metrics['a3'], metrics['a4'], metrics['a5']))

    with open(where_to_write, 'a') as f:
        f.write('%s\n' % first_line)
        f.write("mean median rmse 5 7.5 11.25 22.5 30\n")
        f.write("%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f\n\n" % (
            metrics['mean'], metrics['median'], metrics['rmse'],
            metrics['a1'], metrics['a2'], metrics['a3'], metrics['a4'], metrics['a5']))


# makedir
def makedir(dirpath):
    if not os.path.exists(dirpath):
        os.makedirs(dirpath)


# makedir from list
def make_dir_from_list(dirpath_list):
    for dirpath in dirpath_list:
        makedir(dirpath)



########################################################################################################################
# Visualization
########################################################################################################################


# unnormalize image
__imagenet_stats = {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]}
def unnormalize(img_in):
    img_out = np.zeros(img_in.shape)
    for ich in range(3):
        img_out[:, :, ich] = img_in[:, :, ich] * __imagenet_stats['std'][ich]
        img_out[:, :, ich] += __imagenet_stats['mean'][ich]
    img_out = (img_out * 255).astype(np.uint8)
    return img_out


# kappa to exp error (only applicable to AngMF distribution)
def kappa_to_alpha(pred_kappa):
    alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \
            + ((np.exp(- pred_kappa * np.pi) * np.pi) / (1 + np.exp(- pred_kappa * np.pi)))
    alpha = np.degrees(alpha)
    return alpha


# normal vector to rgb values
def norm_to_rgb(norm):
    # norm: (B, H, W, 3)
    norm_rgb = ((norm[0, ...] + 1) * 0.5) * 255
    norm_rgb = np.clip(norm_rgb, a_min=0, a_max=255)
    norm_rgb = norm_rgb.astype(np.uint8)
    return norm_rgb


# visualize during training
def visualize(args, img, gt_norm, gt_norm_mask, norm_out_list, total_iter):
    B, _, H, W = gt_norm.shape

    pred_norm_list = []
    pred_kappa_list = []
    for norm_out in norm_out_list:
        norm_out = F.interpolate(norm_out, size=[gt_norm.size(2), gt_norm.size(3)], mode='nearest')
        pred_norm = norm_out[:, :3, :, :]  # (B, 3, H, W)
        pred_norm = pred_norm.detach().cpu().permute(0, 2, 3, 1).numpy()  # (B, H, W, 3)
        pred_norm_list.append(pred_norm)

        pred_kappa = norm_out[:, 3:, :, :]  # (B, 1, H, W)
        pred_kappa = pred_kappa.detach().cpu().permute(0, 2, 3, 1).numpy()  # (B, H, W, 1)
        pred_kappa_list.append(pred_kappa)

    # to numpy arrays
    img = img.detach().cpu().permute(0, 2, 3, 1).numpy()                     # (B, H, W, 3)
    gt_norm = gt_norm.detach().cpu().permute(0, 2, 3, 1).numpy()             # (B, H, W, 3)
    gt_norm_mask = gt_norm_mask.detach().cpu().permute(0, 2, 3, 1).numpy()   # (B, H, W, 1)

    # input image
    target_path = '%s/%08d_img.jpg' % (args.exp_vis_dir, total_iter)
    img = unnormalize(img[0, ...])
    plt.imsave(target_path, img)

    # gt norm
    gt_norm_rgb = ((gt_norm[0, ...] + 1) * 0.5) * 255
    gt_norm_rgb = np.clip(gt_norm_rgb, a_min=0, a_max=255)
    gt_norm_rgb = gt_norm_rgb.astype(np.uint8)

    target_path = '%s/%08d_gt_norm.jpg' % (args.exp_vis_dir, total_iter)
    plt.imsave(target_path, gt_norm_rgb * gt_norm_mask[0, ...])

    # pred_norm
    for i in range(len(pred_norm_list)):
        pred_norm = pred_norm_list[i]
        pred_norm_rgb = norm_to_rgb(pred_norm)
        target_path = '%s/%08d_pred_norm_%d.jpg' % (args.exp_vis_dir, total_iter, i)
        plt.imsave(target_path, pred_norm_rgb)

        pred_kappa = pred_kappa_list[i]
        pred_alpha = kappa_to_alpha(pred_kappa)
        target_path = '%s/%08d_pred_alpha_%d.jpg' % (args.exp_vis_dir, total_iter, i)
        plt.imsave(target_path, pred_alpha[0, :, :, 0], vmin=0, vmax=60, cmap='jet')

        # error in angles
        DP = np.sum(gt_norm * pred_norm, axis=3, keepdims=True)  # (B, H, W, 1)
        DP = np.clip(DP, -1, 1)
        E = np.degrees(np.arccos(DP))  # (B, H, W, 1)
        E = E * gt_norm_mask
        target_path = '%s/%08d_pred_error_%d.jpg' % (args.exp_vis_dir, total_iter, i)
        plt.imsave(target_path, E[0, :, :, 0], vmin=0, vmax=60, cmap='jet')