File size: 2,365 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright (c) OpenMMLab. All rights reserved.
import functools

import torch


def assert_tensor_type(func):

    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if not isinstance(args[0].data, torch.Tensor):
            raise AttributeError(
                f'{args[0].__class__.__name__} has no attribute '
                f'{func.__name__} for type {args[0].datatype}')
        return func(*args, **kwargs)

    return wrapper


class DataContainer:
    """A container for any type of objects.

    Typically tensors will be stacked in the collate function and sliced along
    some dimension in the scatter function. This behavior has some limitations.
    1. All tensors have to be the same size.
    2. Types are limited (numpy array or Tensor).

    We design `DataContainer` and `MMDataParallel` to overcome these
    limitations. The behavior can be either of the following.

    - copy to GPU, pad all tensors to the same size and stack them
    - copy to GPU without stacking
    - leave the objects as is and pass it to the model
    - pad_dims specifies the number of last few dimensions to do padding
    """

    def __init__(self,
                 data,
                 stack=False,
                 padding_value=0,
                 cpu_only=False,
                 pad_dims=2):
        self._data = data
        self._cpu_only = cpu_only
        self._stack = stack
        self._padding_value = padding_value
        assert pad_dims in [None, 1, 2, 3]
        self._pad_dims = pad_dims

    def __repr__(self):
        return f'{self.__class__.__name__}({repr(self.data)})'

    def __len__(self):
        return len(self._data)

    @property
    def data(self):
        return self._data

    @property
    def datatype(self):
        if isinstance(self.data, torch.Tensor):
            return self.data.type()
        else:
            return type(self.data)

    @property
    def cpu_only(self):
        return self._cpu_only

    @property
    def stack(self):
        return self._stack

    @property
    def padding_value(self):
        return self._padding_value

    @property
    def pad_dims(self):
        return self._pad_dims

    @assert_tensor_type
    def size(self, *args, **kwargs):
        return self.data.size(*args, **kwargs)

    @assert_tensor_type
    def dim(self):
        return self.data.dim()