File size: 9,248 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import torch
import torch.nn as nn
from PIL import Image
import fnmatch
import cv2

import sys

import numpy as np
from einops import rearrange
from modules import devices
from annotator.annotator_path import models_path


class _bn_relu_conv(nn.Module):
    def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
        super(_bn_relu_conv, self).__init__()
        self.model = nn.Sequential(
            nn.BatchNorm2d(in_filters, eps=1e-3),
            nn.LeakyReLU(0.2),
            nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2), padding_mode='zeros')
        )

    def forward(self, x):
        return self.model(x)

        # the following are for debugs
        print("****", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape)
        for i,layer in enumerate(self.model):
            if i != 2:
                x = layer(x)
            else:
                x = layer(x)
                #x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0)
            print("____", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape)
            print(x[0])
        return x

class _u_bn_relu_conv(nn.Module):
    def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
        super(_u_bn_relu_conv, self).__init__()
        self.model = nn.Sequential(
            nn.BatchNorm2d(in_filters, eps=1e-3),
            nn.LeakyReLU(0.2),
            nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2)),
            nn.Upsample(scale_factor=2, mode='nearest')
        )

    def forward(self, x):
        return self.model(x)



class _shortcut(nn.Module):
    def __init__(self, in_filters, nb_filters, subsample=1):
        super(_shortcut, self).__init__()
        self.process = False
        self.model = None
        if in_filters != nb_filters or subsample != 1:
            self.process = True
            self.model = nn.Sequential(
                    nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample)
                )

    def forward(self, x, y):
        #print(x.size(), y.size(), self.process)
        if self.process:
            y0 = self.model(x)
            #print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape)
            return y0 + y
        else:
            #print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape)
            return x + y

class _u_shortcut(nn.Module):
    def __init__(self, in_filters, nb_filters, subsample):
        super(_u_shortcut, self).__init__()
        self.process = False
        self.model = None
        if in_filters != nb_filters:
            self.process = True
            self.model = nn.Sequential(
                nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample, padding_mode='zeros'),
                nn.Upsample(scale_factor=2, mode='nearest')
            )

    def forward(self, x, y):
        if self.process:
            return self.model(x) + y
        else:
            return x + y


class basic_block(nn.Module):
    def __init__(self, in_filters, nb_filters, init_subsample=1):
        super(basic_block, self).__init__()
        self.conv1 = _bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample)
        self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
        self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.residual(x1)
        return self.shortcut(x, x2)

class _u_basic_block(nn.Module):
    def __init__(self, in_filters, nb_filters, init_subsample=1):
        super(_u_basic_block, self).__init__()
        self.conv1 = _u_bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample)
        self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
        self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample)

    def forward(self, x):
        y = self.residual(self.conv1(x))
        return self.shortcut(x, y)


class _residual_block(nn.Module):
    def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False):
        super(_residual_block, self).__init__()
        layers = []
        for i in range(repetitions):
            init_subsample = 1
            if i == repetitions - 1 and not is_first_layer:
                init_subsample = 2
            if i == 0:
                l = basic_block(in_filters=in_filters, nb_filters=nb_filters, init_subsample=init_subsample)
            else:
                l = basic_block(in_filters=nb_filters, nb_filters=nb_filters, init_subsample=init_subsample)
            layers.append(l)

        self.model = nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)


class _upsampling_residual_block(nn.Module):
    def __init__(self, in_filters, nb_filters, repetitions):
        super(_upsampling_residual_block, self).__init__()
        layers = []
        for i in range(repetitions):
            l = None
            if i == 0: 
                l = _u_basic_block(in_filters=in_filters, nb_filters=nb_filters)#(input)
            else:
                l = basic_block(in_filters=nb_filters, nb_filters=nb_filters)#(input)
            layers.append(l)

        self.model = nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)


class res_skip(nn.Module):

    def __init__(self):
        super(res_skip, self).__init__()
        self.block0 = _residual_block(in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True)#(input)
        self.block1 = _residual_block(in_filters=24, nb_filters=48, repetitions=3)#(block0)
        self.block2 = _residual_block(in_filters=48, nb_filters=96, repetitions=5)#(block1)
        self.block3 = _residual_block(in_filters=96, nb_filters=192, repetitions=7)#(block2)
        self.block4 = _residual_block(in_filters=192, nb_filters=384, repetitions=12)#(block3)
        
        self.block5 = _upsampling_residual_block(in_filters=384, nb_filters=192, repetitions=7)#(block4)
        self.res1 = _shortcut(in_filters=192, nb_filters=192)#(block3, block5, subsample=(1,1))

        self.block6 = _upsampling_residual_block(in_filters=192, nb_filters=96, repetitions=5)#(res1)
        self.res2 = _shortcut(in_filters=96, nb_filters=96)#(block2, block6, subsample=(1,1))

        self.block7 = _upsampling_residual_block(in_filters=96, nb_filters=48, repetitions=3)#(res2)
        self.res3 = _shortcut(in_filters=48, nb_filters=48)#(block1, block7, subsample=(1,1))

        self.block8 = _upsampling_residual_block(in_filters=48, nb_filters=24, repetitions=2)#(res3)
        self.res4 = _shortcut(in_filters=24, nb_filters=24)#(block0,block8, subsample=(1,1))

        self.block9 = _residual_block(in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True)#(res4)
        self.conv15 = _bn_relu_conv(in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1)#(block7)

    def forward(self, x):
        x0 = self.block0(x)
        x1 = self.block1(x0)
        x2 = self.block2(x1)
        x3 = self.block3(x2)
        x4 = self.block4(x3)

        x5 = self.block5(x4)
        res1 = self.res1(x3, x5)

        x6 = self.block6(res1)
        res2 = self.res2(x2, x6)

        x7 = self.block7(res2)
        res3 = self.res3(x1, x7)

        x8 = self.block8(res3)
        res4 = self.res4(x0, x8)

        x9 = self.block9(res4)
        y = self.conv15(x9)

        return y


class MangaLineExtration:
    model_dir = os.path.join(models_path, "manga_line")

    def __init__(self):
        self.model = None
        self.device = devices.get_device_for("controlnet")

    def load_model(self):
        remote_model_path = "https://huggingface.co./lllyasviel/Annotators/resolve/main/erika.pth"
        modelpath = os.path.join(self.model_dir, "erika.pth")
        if not os.path.exists(modelpath):
            from basicsr.utils.download_util import load_file_from_url
            load_file_from_url(remote_model_path, model_dir=self.model_dir)
        #norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
        net = res_skip()
        ckpt = torch.load(modelpath)
        for key in list(ckpt.keys()):
            if 'module.' in key:
                ckpt[key.replace('module.', '')] = ckpt[key]
                del ckpt[key]
        net.load_state_dict(ckpt)
        net.eval()
        self.model = net.to(self.device)

    def unload_model(self):
        if self.model is not None:
            self.model.cpu()

    def __call__(self, input_image):
        if self.model is None:
            self.load_model()
        self.model.to(self.device)
        img = cv2.cvtColor(input_image, cv2.COLOR_RGB2GRAY)
        img = np.ascontiguousarray(img.copy()).copy()
        with torch.no_grad():
            image_feed = torch.from_numpy(img).float().to(self.device)
            image_feed = rearrange(image_feed, 'h w -> 1 1 h w')
            line = self.model(image_feed)
            line = 255 - line.cpu().numpy()[0, 0]
            return line.clip(0, 255).astype(np.uint8)