File size: 3,113 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch

from ..utils import ext_loader

ext_module = ext_loader.load_ext('_ext', ['pixel_group'])


def pixel_group(score, mask, embedding, kernel_label, kernel_contour,
                kernel_region_num, distance_threshold):
    """Group pixels into text instances, which is widely used text detection
    methods.

    Arguments:
        score (np.array or Tensor): The foreground score with size hxw.
        mask (np.array or Tensor): The foreground mask with size hxw.
        embedding (np.array or Tensor): The embedding with size hxwxc to
            distinguish instances.
        kernel_label (np.array or Tensor): The instance kernel index with
            size hxw.
        kernel_contour (np.array or Tensor): The kernel contour with size hxw.
        kernel_region_num (int): The instance kernel region number.
        distance_threshold (float): The embedding distance threshold between
            kernel and pixel in one instance.

    Returns:
        pixel_assignment (List[List[float]]): The instance coordinate list.
            Each element consists of averaged confidence, pixel number, and
            coordinates (x_i, y_i for all pixels) in order.
    """
    assert isinstance(score, (torch.Tensor, np.ndarray))
    assert isinstance(mask, (torch.Tensor, np.ndarray))
    assert isinstance(embedding, (torch.Tensor, np.ndarray))
    assert isinstance(kernel_label, (torch.Tensor, np.ndarray))
    assert isinstance(kernel_contour, (torch.Tensor, np.ndarray))
    assert isinstance(kernel_region_num, int)
    assert isinstance(distance_threshold, float)

    if isinstance(score, np.ndarray):
        score = torch.from_numpy(score)
    if isinstance(mask, np.ndarray):
        mask = torch.from_numpy(mask)
    if isinstance(embedding, np.ndarray):
        embedding = torch.from_numpy(embedding)
    if isinstance(kernel_label, np.ndarray):
        kernel_label = torch.from_numpy(kernel_label)
    if isinstance(kernel_contour, np.ndarray):
        kernel_contour = torch.from_numpy(kernel_contour)

    if torch.__version__ == 'parrots':
        label = ext_module.pixel_group(
            score,
            mask,
            embedding,
            kernel_label,
            kernel_contour,
            kernel_region_num=kernel_region_num,
            distance_threshold=distance_threshold)
        label = label.tolist()
        label = label[0]
        list_index = kernel_region_num
        pixel_assignment = []
        for x in range(kernel_region_num):
            pixel_assignment.append(
                np.array(
                    label[list_index:list_index + int(label[x])],
                    dtype=np.float))
            list_index = list_index + int(label[x])
    else:
        pixel_assignment = ext_module.pixel_group(score, mask, embedding,
                                                  kernel_label, kernel_contour,
                                                  kernel_region_num,
                                                  distance_threshold)
    return pixel_assignment