File size: 22,100 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
# Modified from flops-counter.pytorch by Vladislav Sovrasov
# original repo: https://github.com/sovrasov/flops-counter.pytorch

# MIT License

# Copyright (c) 2018 Vladislav Sovrasov

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import sys
from functools import partial

import numpy as np
import torch
import torch.nn as nn

import annotator.mmpkg.mmcv as mmcv


def get_model_complexity_info(model,
                              input_shape,
                              print_per_layer_stat=True,
                              as_strings=True,
                              input_constructor=None,
                              flush=False,
                              ost=sys.stdout):
    """Get complexity information of a model.

    This method can calculate FLOPs and parameter counts of a model with
    corresponding input shape. It can also print complexity information for
    each layer in a model.

    Supported layers are listed as below:
        - Convolutions: ``nn.Conv1d``, ``nn.Conv2d``, ``nn.Conv3d``.
        - Activations: ``nn.ReLU``, ``nn.PReLU``, ``nn.ELU``, ``nn.LeakyReLU``,
            ``nn.ReLU6``.
        - Poolings: ``nn.MaxPool1d``, ``nn.MaxPool2d``, ``nn.MaxPool3d``,
            ``nn.AvgPool1d``, ``nn.AvgPool2d``, ``nn.AvgPool3d``,
            ``nn.AdaptiveMaxPool1d``, ``nn.AdaptiveMaxPool2d``,
            ``nn.AdaptiveMaxPool3d``, ``nn.AdaptiveAvgPool1d``,
            ``nn.AdaptiveAvgPool2d``, ``nn.AdaptiveAvgPool3d``.
        - BatchNorms: ``nn.BatchNorm1d``, ``nn.BatchNorm2d``,
            ``nn.BatchNorm3d``, ``nn.GroupNorm``, ``nn.InstanceNorm1d``,
            ``InstanceNorm2d``, ``InstanceNorm3d``, ``nn.LayerNorm``.
        - Linear: ``nn.Linear``.
        - Deconvolution: ``nn.ConvTranspose2d``.
        - Upsample: ``nn.Upsample``.

    Args:
        model (nn.Module): The model for complexity calculation.
        input_shape (tuple): Input shape used for calculation.
        print_per_layer_stat (bool): Whether to print complexity information
            for each layer in a model. Default: True.
        as_strings (bool): Output FLOPs and params counts in a string form.
            Default: True.
        input_constructor (None | callable): If specified, it takes a callable
            method that generates input. otherwise, it will generate a random
            tensor with input shape to calculate FLOPs. Default: None.
        flush (bool): same as that in :func:`print`. Default: False.
        ost (stream): same as ``file`` param in :func:`print`.
            Default: sys.stdout.

    Returns:
        tuple[float | str]: If ``as_strings`` is set to True, it will return
            FLOPs and parameter counts in a string format. otherwise, it will
            return those in a float number format.
    """
    assert type(input_shape) is tuple
    assert len(input_shape) >= 1
    assert isinstance(model, nn.Module)
    flops_model = add_flops_counting_methods(model)
    flops_model.eval()
    flops_model.start_flops_count()
    if input_constructor:
        input = input_constructor(input_shape)
        _ = flops_model(**input)
    else:
        try:
            batch = torch.ones(()).new_empty(
                (1, *input_shape),
                dtype=next(flops_model.parameters()).dtype,
                device=next(flops_model.parameters()).device)
        except StopIteration:
            # Avoid StopIteration for models which have no parameters,
            # like `nn.Relu()`, `nn.AvgPool2d`, etc.
            batch = torch.ones(()).new_empty((1, *input_shape))

        _ = flops_model(batch)

    flops_count, params_count = flops_model.compute_average_flops_cost()
    if print_per_layer_stat:
        print_model_with_flops(
            flops_model, flops_count, params_count, ost=ost, flush=flush)
    flops_model.stop_flops_count()

    if as_strings:
        return flops_to_string(flops_count), params_to_string(params_count)

    return flops_count, params_count


def flops_to_string(flops, units='GFLOPs', precision=2):
    """Convert FLOPs number into a string.

    Note that Here we take a multiply-add counts as one FLOP.

    Args:
        flops (float): FLOPs number to be converted.
        units (str | None): Converted FLOPs units. Options are None, 'GFLOPs',
            'MFLOPs', 'KFLOPs', 'FLOPs'. If set to None, it will automatically
            choose the most suitable unit for FLOPs. Default: 'GFLOPs'.
        precision (int): Digit number after the decimal point. Default: 2.

    Returns:
        str: The converted FLOPs number with units.

    Examples:
        >>> flops_to_string(1e9)
        '1.0 GFLOPs'
        >>> flops_to_string(2e5, 'MFLOPs')
        '0.2 MFLOPs'
        >>> flops_to_string(3e-9, None)
        '3e-09 FLOPs'
    """
    if units is None:
        if flops // 10**9 > 0:
            return str(round(flops / 10.**9, precision)) + ' GFLOPs'
        elif flops // 10**6 > 0:
            return str(round(flops / 10.**6, precision)) + ' MFLOPs'
        elif flops // 10**3 > 0:
            return str(round(flops / 10.**3, precision)) + ' KFLOPs'
        else:
            return str(flops) + ' FLOPs'
    else:
        if units == 'GFLOPs':
            return str(round(flops / 10.**9, precision)) + ' ' + units
        elif units == 'MFLOPs':
            return str(round(flops / 10.**6, precision)) + ' ' + units
        elif units == 'KFLOPs':
            return str(round(flops / 10.**3, precision)) + ' ' + units
        else:
            return str(flops) + ' FLOPs'


def params_to_string(num_params, units=None, precision=2):
    """Convert parameter number into a string.

    Args:
        num_params (float): Parameter number to be converted.
        units (str | None): Converted FLOPs units. Options are None, 'M',
            'K' and ''. If set to None, it will automatically choose the most
            suitable unit for Parameter number. Default: None.
        precision (int): Digit number after the decimal point. Default: 2.

    Returns:
        str: The converted parameter number with units.

    Examples:
        >>> params_to_string(1e9)
        '1000.0 M'
        >>> params_to_string(2e5)
        '200.0 k'
        >>> params_to_string(3e-9)
        '3e-09'
    """
    if units is None:
        if num_params // 10**6 > 0:
            return str(round(num_params / 10**6, precision)) + ' M'
        elif num_params // 10**3:
            return str(round(num_params / 10**3, precision)) + ' k'
        else:
            return str(num_params)
    else:
        if units == 'M':
            return str(round(num_params / 10.**6, precision)) + ' ' + units
        elif units == 'K':
            return str(round(num_params / 10.**3, precision)) + ' ' + units
        else:
            return str(num_params)


def print_model_with_flops(model,
                           total_flops,
                           total_params,
                           units='GFLOPs',
                           precision=3,
                           ost=sys.stdout,
                           flush=False):
    """Print a model with FLOPs for each layer.

    Args:
        model (nn.Module): The model to be printed.
        total_flops (float): Total FLOPs of the model.
        total_params (float): Total parameter counts of the model.
        units (str | None): Converted FLOPs units. Default: 'GFLOPs'.
        precision (int): Digit number after the decimal point. Default: 3.
        ost (stream): same as `file` param in :func:`print`.
            Default: sys.stdout.
        flush (bool): same as that in :func:`print`. Default: False.

    Example:
        >>> class ExampleModel(nn.Module):

        >>> def __init__(self):
        >>>     super().__init__()
        >>>     self.conv1 = nn.Conv2d(3, 8, 3)
        >>>     self.conv2 = nn.Conv2d(8, 256, 3)
        >>>     self.conv3 = nn.Conv2d(256, 8, 3)
        >>>     self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        >>>     self.flatten = nn.Flatten()
        >>>     self.fc = nn.Linear(8, 1)

        >>> def forward(self, x):
        >>>     x = self.conv1(x)
        >>>     x = self.conv2(x)
        >>>     x = self.conv3(x)
        >>>     x = self.avg_pool(x)
        >>>     x = self.flatten(x)
        >>>     x = self.fc(x)
        >>>     return x

        >>> model = ExampleModel()
        >>> x = (3, 16, 16)
        to print the complexity information state for each layer, you can use
        >>> get_model_complexity_info(model, x)
        or directly use
        >>> print_model_with_flops(model, 4579784.0, 37361)
        ExampleModel(
          0.037 M, 100.000% Params, 0.005 GFLOPs, 100.000% FLOPs,
          (conv1): Conv2d(0.0 M, 0.600% Params, 0.0 GFLOPs, 0.959% FLOPs, 3, 8, kernel_size=(3, 3), stride=(1, 1))  # noqa: E501
          (conv2): Conv2d(0.019 M, 50.020% Params, 0.003 GFLOPs, 58.760% FLOPs, 8, 256, kernel_size=(3, 3), stride=(1, 1))
          (conv3): Conv2d(0.018 M, 49.356% Params, 0.002 GFLOPs, 40.264% FLOPs, 256, 8, kernel_size=(3, 3), stride=(1, 1))
          (avg_pool): AdaptiveAvgPool2d(0.0 M, 0.000% Params, 0.0 GFLOPs, 0.017% FLOPs, output_size=(1, 1))
          (flatten): Flatten(0.0 M, 0.000% Params, 0.0 GFLOPs, 0.000% FLOPs, )
          (fc): Linear(0.0 M, 0.024% Params, 0.0 GFLOPs, 0.000% FLOPs, in_features=8, out_features=1, bias=True)
        )
    """

    def accumulate_params(self):
        if is_supported_instance(self):
            return self.__params__
        else:
            sum = 0
            for m in self.children():
                sum += m.accumulate_params()
            return sum

    def accumulate_flops(self):
        if is_supported_instance(self):
            return self.__flops__ / model.__batch_counter__
        else:
            sum = 0
            for m in self.children():
                sum += m.accumulate_flops()
            return sum

    def flops_repr(self):
        accumulated_num_params = self.accumulate_params()
        accumulated_flops_cost = self.accumulate_flops()
        return ', '.join([
            params_to_string(
                accumulated_num_params, units='M', precision=precision),
            '{:.3%} Params'.format(accumulated_num_params / total_params),
            flops_to_string(
                accumulated_flops_cost, units=units, precision=precision),
            '{:.3%} FLOPs'.format(accumulated_flops_cost / total_flops),
            self.original_extra_repr()
        ])

    def add_extra_repr(m):
        m.accumulate_flops = accumulate_flops.__get__(m)
        m.accumulate_params = accumulate_params.__get__(m)
        flops_extra_repr = flops_repr.__get__(m)
        if m.extra_repr != flops_extra_repr:
            m.original_extra_repr = m.extra_repr
            m.extra_repr = flops_extra_repr
            assert m.extra_repr != m.original_extra_repr

    def del_extra_repr(m):
        if hasattr(m, 'original_extra_repr'):
            m.extra_repr = m.original_extra_repr
            del m.original_extra_repr
        if hasattr(m, 'accumulate_flops'):
            del m.accumulate_flops

    model.apply(add_extra_repr)
    print(model, file=ost, flush=flush)
    model.apply(del_extra_repr)


def get_model_parameters_number(model):
    """Calculate parameter number of a model.

    Args:
        model (nn.module): The model for parameter number calculation.

    Returns:
        float: Parameter number of the model.
    """
    num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    return num_params


def add_flops_counting_methods(net_main_module):
    # adding additional methods to the existing module object,
    # this is done this way so that each function has access to self object
    net_main_module.start_flops_count = start_flops_count.__get__(
        net_main_module)
    net_main_module.stop_flops_count = stop_flops_count.__get__(
        net_main_module)
    net_main_module.reset_flops_count = reset_flops_count.__get__(
        net_main_module)
    net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__(  # noqa: E501
        net_main_module)

    net_main_module.reset_flops_count()

    return net_main_module


def compute_average_flops_cost(self):
    """Compute average FLOPs cost.

    A method to compute average FLOPs cost, which will be available after
    `add_flops_counting_methods()` is called on a desired net object.

    Returns:
        float: Current mean flops consumption per image.
    """
    batches_count = self.__batch_counter__
    flops_sum = 0
    for module in self.modules():
        if is_supported_instance(module):
            flops_sum += module.__flops__
    params_sum = get_model_parameters_number(self)
    return flops_sum / batches_count, params_sum


def start_flops_count(self):
    """Activate the computation of mean flops consumption per image.

    A method to activate the computation of mean flops consumption per image.
    which will be available after ``add_flops_counting_methods()`` is called on
    a desired net object. It should be called before running the network.
    """
    add_batch_counter_hook_function(self)

    def add_flops_counter_hook_function(module):
        if is_supported_instance(module):
            if hasattr(module, '__flops_handle__'):
                return

            else:
                handle = module.register_forward_hook(
                    get_modules_mapping()[type(module)])

            module.__flops_handle__ = handle

    self.apply(partial(add_flops_counter_hook_function))


def stop_flops_count(self):
    """Stop computing the mean flops consumption per image.

    A method to stop computing the mean flops consumption per image, which will
    be available after ``add_flops_counting_methods()`` is called on a desired
    net object. It can be called to pause the computation whenever.
    """
    remove_batch_counter_hook_function(self)
    self.apply(remove_flops_counter_hook_function)


def reset_flops_count(self):
    """Reset statistics computed so far.

    A method to Reset computed statistics, which will be available after
    `add_flops_counting_methods()` is called on a desired net object.
    """
    add_batch_counter_variables_or_reset(self)
    self.apply(add_flops_counter_variable_or_reset)


# ---- Internal functions
def empty_flops_counter_hook(module, input, output):
    module.__flops__ += 0


def upsample_flops_counter_hook(module, input, output):
    output_size = output[0]
    batch_size = output_size.shape[0]
    output_elements_count = batch_size
    for val in output_size.shape[1:]:
        output_elements_count *= val
    module.__flops__ += int(output_elements_count)


def relu_flops_counter_hook(module, input, output):
    active_elements_count = output.numel()
    module.__flops__ += int(active_elements_count)


def linear_flops_counter_hook(module, input, output):
    input = input[0]
    output_last_dim = output.shape[
        -1]  # pytorch checks dimensions, so here we don't care much
    module.__flops__ += int(np.prod(input.shape) * output_last_dim)


def pool_flops_counter_hook(module, input, output):
    input = input[0]
    module.__flops__ += int(np.prod(input.shape))


def norm_flops_counter_hook(module, input, output):
    input = input[0]

    batch_flops = np.prod(input.shape)
    if (getattr(module, 'affine', False)
            or getattr(module, 'elementwise_affine', False)):
        batch_flops *= 2
    module.__flops__ += int(batch_flops)


def deconv_flops_counter_hook(conv_module, input, output):
    # Can have multiple inputs, getting the first one
    input = input[0]

    batch_size = input.shape[0]
    input_height, input_width = input.shape[2:]

    kernel_height, kernel_width = conv_module.kernel_size
    in_channels = conv_module.in_channels
    out_channels = conv_module.out_channels
    groups = conv_module.groups

    filters_per_channel = out_channels // groups
    conv_per_position_flops = (
        kernel_height * kernel_width * in_channels * filters_per_channel)

    active_elements_count = batch_size * input_height * input_width
    overall_conv_flops = conv_per_position_flops * active_elements_count
    bias_flops = 0
    if conv_module.bias is not None:
        output_height, output_width = output.shape[2:]
        bias_flops = out_channels * batch_size * output_height * output_height
    overall_flops = overall_conv_flops + bias_flops

    conv_module.__flops__ += int(overall_flops)


def conv_flops_counter_hook(conv_module, input, output):
    # Can have multiple inputs, getting the first one
    input = input[0]

    batch_size = input.shape[0]
    output_dims = list(output.shape[2:])

    kernel_dims = list(conv_module.kernel_size)
    in_channels = conv_module.in_channels
    out_channels = conv_module.out_channels
    groups = conv_module.groups

    filters_per_channel = out_channels // groups
    conv_per_position_flops = int(
        np.prod(kernel_dims)) * in_channels * filters_per_channel

    active_elements_count = batch_size * int(np.prod(output_dims))

    overall_conv_flops = conv_per_position_flops * active_elements_count

    bias_flops = 0

    if conv_module.bias is not None:

        bias_flops = out_channels * active_elements_count

    overall_flops = overall_conv_flops + bias_flops

    conv_module.__flops__ += int(overall_flops)


def batch_counter_hook(module, input, output):
    batch_size = 1
    if len(input) > 0:
        # Can have multiple inputs, getting the first one
        input = input[0]
        batch_size = len(input)
    else:
        pass
        print('Warning! No positional inputs found for a module, '
              'assuming batch size is 1.')
    module.__batch_counter__ += batch_size


def add_batch_counter_variables_or_reset(module):

    module.__batch_counter__ = 0


def add_batch_counter_hook_function(module):
    if hasattr(module, '__batch_counter_handle__'):
        return

    handle = module.register_forward_hook(batch_counter_hook)
    module.__batch_counter_handle__ = handle


def remove_batch_counter_hook_function(module):
    if hasattr(module, '__batch_counter_handle__'):
        module.__batch_counter_handle__.remove()
        del module.__batch_counter_handle__


def add_flops_counter_variable_or_reset(module):
    if is_supported_instance(module):
        if hasattr(module, '__flops__') or hasattr(module, '__params__'):
            print('Warning: variables __flops__ or __params__ are already '
                  'defined for the module' + type(module).__name__ +
                  ' ptflops can affect your code!')
        module.__flops__ = 0
        module.__params__ = get_model_parameters_number(module)


def is_supported_instance(module):
    if type(module) in get_modules_mapping():
        return True
    return False


def remove_flops_counter_hook_function(module):
    if is_supported_instance(module):
        if hasattr(module, '__flops_handle__'):
            module.__flops_handle__.remove()
            del module.__flops_handle__


def get_modules_mapping():
    return {
        # convolutions
        nn.Conv1d: conv_flops_counter_hook,
        nn.Conv2d: conv_flops_counter_hook,
        mmcv.cnn.bricks.Conv2d: conv_flops_counter_hook,
        nn.Conv3d: conv_flops_counter_hook,
        mmcv.cnn.bricks.Conv3d: conv_flops_counter_hook,
        # activations
        nn.ReLU: relu_flops_counter_hook,
        nn.PReLU: relu_flops_counter_hook,
        nn.ELU: relu_flops_counter_hook,
        nn.LeakyReLU: relu_flops_counter_hook,
        nn.ReLU6: relu_flops_counter_hook,
        # poolings
        nn.MaxPool1d: pool_flops_counter_hook,
        nn.AvgPool1d: pool_flops_counter_hook,
        nn.AvgPool2d: pool_flops_counter_hook,
        nn.MaxPool2d: pool_flops_counter_hook,
        mmcv.cnn.bricks.MaxPool2d: pool_flops_counter_hook,
        nn.MaxPool3d: pool_flops_counter_hook,
        mmcv.cnn.bricks.MaxPool3d: pool_flops_counter_hook,
        nn.AvgPool3d: pool_flops_counter_hook,
        nn.AdaptiveMaxPool1d: pool_flops_counter_hook,
        nn.AdaptiveAvgPool1d: pool_flops_counter_hook,
        nn.AdaptiveMaxPool2d: pool_flops_counter_hook,
        nn.AdaptiveAvgPool2d: pool_flops_counter_hook,
        nn.AdaptiveMaxPool3d: pool_flops_counter_hook,
        nn.AdaptiveAvgPool3d: pool_flops_counter_hook,
        # normalizations
        nn.BatchNorm1d: norm_flops_counter_hook,
        nn.BatchNorm2d: norm_flops_counter_hook,
        nn.BatchNorm3d: norm_flops_counter_hook,
        nn.GroupNorm: norm_flops_counter_hook,
        nn.InstanceNorm1d: norm_flops_counter_hook,
        nn.InstanceNorm2d: norm_flops_counter_hook,
        nn.InstanceNorm3d: norm_flops_counter_hook,
        nn.LayerNorm: norm_flops_counter_hook,
        # FC
        nn.Linear: linear_flops_counter_hook,
        mmcv.cnn.bricks.Linear: linear_flops_counter_hook,
        # Upscale
        nn.Upsample: upsample_flops_counter_hook,
        # Deconvolution
        nn.ConvTranspose2d: deconv_flops_counter_hook,
        mmcv.cnn.bricks.ConvTranspose2d: deconv_flops_counter_hook,
    }