Spaces:
Running
Running
Upload 126 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .flake8 +3 -0
- .gitattributes +2 -0
- .github/ISSUE_TEMPLATE/bug_report.md +37 -0
- .github/workflows/stale.yml +29 -0
- .gitignore +15 -0
- Dockerfile +18 -0
- LICENSE +661 -0
- README.md +253 -14
- clip/__init__.py +1 -0
- clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- clip/clip.py +241 -0
- clip/clipseg.py +538 -0
- clip/model.py +436 -0
- clip/simple_tokenizer.py +132 -0
- clip/vitseg.py +286 -0
- config_colab.yaml +14 -0
- docs/screenshot.png +3 -0
- installer/installer.py +87 -0
- installer/macOSinstaller.sh +73 -0
- installer/windows_run.bat +95 -0
- mypy.ini +7 -0
- requirements.txt +15 -0
- roop-unleashed-main/.flake8 +3 -0
- roop-unleashed-main/.github/ISSUE_TEMPLATE/bug_report.md +37 -0
- roop-unleashed-main/.github/workflows/stale.yml +29 -0
- roop-unleashed-main/.gitignore +15 -0
- roop-unleashed-main/Dockerfile +18 -0
- roop-unleashed-main/LICENSE +661 -0
- roop-unleashed-main/README.md +253 -0
- roop-unleashed-main/clip/__init__.py +1 -0
- roop-unleashed-main/clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- roop-unleashed-main/clip/clip.py +241 -0
- roop-unleashed-main/clip/clipseg.py +538 -0
- roop-unleashed-main/clip/model.py +436 -0
- roop-unleashed-main/clip/simple_tokenizer.py +132 -0
- roop-unleashed-main/clip/vitseg.py +286 -0
- roop-unleashed-main/config_colab.yaml +14 -0
- roop-unleashed-main/docs/screenshot.png +3 -0
- roop-unleashed-main/installer/installer.py +87 -0
- roop-unleashed-main/installer/macOSinstaller.sh +73 -0
- roop-unleashed-main/installer/windows_run.bat +95 -0
- roop-unleashed-main/mypy.ini +7 -0
- roop-unleashed-main/requirements.txt +19 -0
- roop-unleashed-main/roop-unleashed.ipynb +166 -0
- roop-unleashed-main/roop/FaceSet.py +20 -0
- roop-unleashed-main/roop/ProcessEntry.py +7 -0
- roop-unleashed-main/roop/ProcessMgr.py +911 -0
- roop-unleashed-main/roop/ProcessOptions.py +18 -0
- roop-unleashed-main/roop/StreamWriter.py +60 -0
- roop-unleashed-main/roop/__init__.py +0 -0
.flake8
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[flake8]
|
2 |
+
select = E3, E4, F
|
3 |
+
per-file-ignores = roop/core.py:E402
|
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
docs/screenshot.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
roop-unleashed-main/docs/screenshot.png filter=lfs diff=lfs merge=lfs -text
|
.github/ISSUE_TEMPLATE/bug_report.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: Bug report
|
3 |
+
about: Create a report to help us improve
|
4 |
+
title: ''
|
5 |
+
labels: ''
|
6 |
+
assignees: ''
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
**Describe the bug**
|
11 |
+
A clear and concise description of what the bug is.
|
12 |
+
|
13 |
+
**To Reproduce**
|
14 |
+
Steps to reproduce the behavior:
|
15 |
+
1. Go to '...'
|
16 |
+
2. Click on '....'
|
17 |
+
3. Scroll down to '....'
|
18 |
+
4. See error
|
19 |
+
|
20 |
+
**Details**
|
21 |
+
What OS are you using?
|
22 |
+
- [ ] Linux
|
23 |
+
- [ ] Linux in WSL
|
24 |
+
- [ ] Windows
|
25 |
+
- [ ] Mac
|
26 |
+
|
27 |
+
Are you using a GPU?
|
28 |
+
- [ ] No. CPU FTW
|
29 |
+
- [ ] NVIDIA
|
30 |
+
- [ ] AMD
|
31 |
+
- [ ] Intel
|
32 |
+
- [ ] Mac
|
33 |
+
|
34 |
+
**Which version of roop unleashed are you using?**
|
35 |
+
|
36 |
+
**Screenshots**
|
37 |
+
If applicable, add screenshots to help explain your problem.
|
.github/workflows/stale.yml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This workflow warns and then closes issues and PRs that have had no activity for a specified amount of time.
|
2 |
+
#
|
3 |
+
# You can adjust the behavior by modifying this file.
|
4 |
+
# For more information, see:
|
5 |
+
# https://github.com/actions/stale
|
6 |
+
name: Mark stale issues and pull requests
|
7 |
+
|
8 |
+
on:
|
9 |
+
schedule:
|
10 |
+
- cron: '32 0 * * *'
|
11 |
+
|
12 |
+
jobs:
|
13 |
+
stale:
|
14 |
+
|
15 |
+
runs-on: ubuntu-latest
|
16 |
+
permissions:
|
17 |
+
issues: write
|
18 |
+
pull-requests: write
|
19 |
+
|
20 |
+
steps:
|
21 |
+
- uses: actions/stale@v5
|
22 |
+
with:
|
23 |
+
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
24 |
+
stale-issue-message: 'This issue is stale because it has been open 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
|
25 |
+
stale-pr-message: 'This PR is stale because it has been open 45 days with no activity. Remove stale label or comment or this will be closed in 10 days.'
|
26 |
+
close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.'
|
27 |
+
days-before-stale: 30
|
28 |
+
days-before-close: 5
|
29 |
+
days-before-pr-close: -1
|
.gitignore
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vs
|
2 |
+
.idea
|
3 |
+
models
|
4 |
+
temp
|
5 |
+
__pycache__
|
6 |
+
*.pth
|
7 |
+
/start.bat
|
8 |
+
/env
|
9 |
+
.vscode
|
10 |
+
output
|
11 |
+
temp
|
12 |
+
config.yaml
|
13 |
+
run.bat
|
14 |
+
venv
|
15 |
+
start.sh
|
Dockerfile
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11
|
2 |
+
|
3 |
+
# making app folder
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# copying files
|
7 |
+
COPY . .
|
8 |
+
|
9 |
+
# installing requirements
|
10 |
+
RUN apt-get update
|
11 |
+
RUN apt-get install ffmpeg -y
|
12 |
+
RUN pip install --upgrade pip
|
13 |
+
RUN pip install -r ./requirements.txt
|
14 |
+
|
15 |
+
# launching gradio app
|
16 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
17 |
+
EXPOSE 7860
|
18 |
+
ENTRYPOINT python ./run.py
|
LICENSE
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 19 November 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU Affero General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works, specifically designed to ensure
|
12 |
+
cooperation with the community in the case of network server software.
|
13 |
+
|
14 |
+
The licenses for most software and other practical works are designed
|
15 |
+
to take away your freedom to share and change the works. By contrast,
|
16 |
+
our General Public Licenses are intended to guarantee your freedom to
|
17 |
+
share and change all versions of a program--to make sure it remains free
|
18 |
+
software for all its users.
|
19 |
+
|
20 |
+
When we speak of free software, we are referring to freedom, not
|
21 |
+
price. Our General Public Licenses are designed to make sure that you
|
22 |
+
have the freedom to distribute copies of free software (and charge for
|
23 |
+
them if you wish), that you receive source code or can get it if you
|
24 |
+
want it, that you can change the software or use pieces of it in new
|
25 |
+
free programs, and that you know you can do these things.
|
26 |
+
|
27 |
+
Developers that use our General Public Licenses protect your rights
|
28 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
29 |
+
you this License which gives you legal permission to copy, distribute
|
30 |
+
and/or modify the software.
|
31 |
+
|
32 |
+
A secondary benefit of defending all users' freedom is that
|
33 |
+
improvements made in alternate versions of the program, if they
|
34 |
+
receive widespread use, become available for other developers to
|
35 |
+
incorporate. Many developers of free software are heartened and
|
36 |
+
encouraged by the resulting cooperation. However, in the case of
|
37 |
+
software used on network servers, this result may fail to come about.
|
38 |
+
The GNU General Public License permits making a modified version and
|
39 |
+
letting the public access it on a server without ever releasing its
|
40 |
+
source code to the public.
|
41 |
+
|
42 |
+
The GNU Affero General Public License is designed specifically to
|
43 |
+
ensure that, in such cases, the modified source code becomes available
|
44 |
+
to the community. It requires the operator of a network server to
|
45 |
+
provide the source code of the modified version running there to the
|
46 |
+
users of that server. Therefore, public use of a modified version, on
|
47 |
+
a publicly accessible server, gives the public access to the source
|
48 |
+
code of the modified version.
|
49 |
+
|
50 |
+
An older license, called the Affero General Public License and
|
51 |
+
published by Affero, was designed to accomplish similar goals. This is
|
52 |
+
a different license, not a version of the Affero GPL, but Affero has
|
53 |
+
released a new version of the Affero GPL which permits relicensing under
|
54 |
+
this license.
|
55 |
+
|
56 |
+
The precise terms and conditions for copying, distribution and
|
57 |
+
modification follow.
|
58 |
+
|
59 |
+
TERMS AND CONDITIONS
|
60 |
+
|
61 |
+
0. Definitions.
|
62 |
+
|
63 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
64 |
+
|
65 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
66 |
+
works, such as semiconductor masks.
|
67 |
+
|
68 |
+
"The Program" refers to any copyrightable work licensed under this
|
69 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
70 |
+
"recipients" may be individuals or organizations.
|
71 |
+
|
72 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
73 |
+
in a fashion requiring copyright permission, other than the making of an
|
74 |
+
exact copy. The resulting work is called a "modified version" of the
|
75 |
+
earlier work or a work "based on" the earlier work.
|
76 |
+
|
77 |
+
A "covered work" means either the unmodified Program or a work based
|
78 |
+
on the Program.
|
79 |
+
|
80 |
+
To "propagate" a work means to do anything with it that, without
|
81 |
+
permission, would make you directly or secondarily liable for
|
82 |
+
infringement under applicable copyright law, except executing it on a
|
83 |
+
computer or modifying a private copy. Propagation includes copying,
|
84 |
+
distribution (with or without modification), making available to the
|
85 |
+
public, and in some countries other activities as well.
|
86 |
+
|
87 |
+
To "convey" a work means any kind of propagation that enables other
|
88 |
+
parties to make or receive copies. Mere interaction with a user through
|
89 |
+
a computer network, with no transfer of a copy, is not conveying.
|
90 |
+
|
91 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
92 |
+
to the extent that it includes a convenient and prominently visible
|
93 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
94 |
+
tells the user that there is no warranty for the work (except to the
|
95 |
+
extent that warranties are provided), that licensees may convey the
|
96 |
+
work under this License, and how to view a copy of this License. If
|
97 |
+
the interface presents a list of user commands or options, such as a
|
98 |
+
menu, a prominent item in the list meets this criterion.
|
99 |
+
|
100 |
+
1. Source Code.
|
101 |
+
|
102 |
+
The "source code" for a work means the preferred form of the work
|
103 |
+
for making modifications to it. "Object code" means any non-source
|
104 |
+
form of a work.
|
105 |
+
|
106 |
+
A "Standard Interface" means an interface that either is an official
|
107 |
+
standard defined by a recognized standards body, or, in the case of
|
108 |
+
interfaces specified for a particular programming language, one that
|
109 |
+
is widely used among developers working in that language.
|
110 |
+
|
111 |
+
The "System Libraries" of an executable work include anything, other
|
112 |
+
than the work as a whole, that (a) is included in the normal form of
|
113 |
+
packaging a Major Component, but which is not part of that Major
|
114 |
+
Component, and (b) serves only to enable use of the work with that
|
115 |
+
Major Component, or to implement a Standard Interface for which an
|
116 |
+
implementation is available to the public in source code form. A
|
117 |
+
"Major Component", in this context, means a major essential component
|
118 |
+
(kernel, window system, and so on) of the specific operating system
|
119 |
+
(if any) on which the executable work runs, or a compiler used to
|
120 |
+
produce the work, or an object code interpreter used to run it.
|
121 |
+
|
122 |
+
The "Corresponding Source" for a work in object code form means all
|
123 |
+
the source code needed to generate, install, and (for an executable
|
124 |
+
work) run the object code and to modify the work, including scripts to
|
125 |
+
control those activities. However, it does not include the work's
|
126 |
+
System Libraries, or general-purpose tools or generally available free
|
127 |
+
programs which are used unmodified in performing those activities but
|
128 |
+
which are not part of the work. For example, Corresponding Source
|
129 |
+
includes interface definition files associated with source files for
|
130 |
+
the work, and the source code for shared libraries and dynamically
|
131 |
+
linked subprograms that the work is specifically designed to require,
|
132 |
+
such as by intimate data communication or control flow between those
|
133 |
+
subprograms and other parts of the work.
|
134 |
+
|
135 |
+
The Corresponding Source need not include anything that users
|
136 |
+
can regenerate automatically from other parts of the Corresponding
|
137 |
+
Source.
|
138 |
+
|
139 |
+
The Corresponding Source for a work in source code form is that
|
140 |
+
same work.
|
141 |
+
|
142 |
+
2. Basic Permissions.
|
143 |
+
|
144 |
+
All rights granted under this License are granted for the term of
|
145 |
+
copyright on the Program, and are irrevocable provided the stated
|
146 |
+
conditions are met. This License explicitly affirms your unlimited
|
147 |
+
permission to run the unmodified Program. The output from running a
|
148 |
+
covered work is covered by this License only if the output, given its
|
149 |
+
content, constitutes a covered work. This License acknowledges your
|
150 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
151 |
+
|
152 |
+
You may make, run and propagate covered works that you do not
|
153 |
+
convey, without conditions so long as your license otherwise remains
|
154 |
+
in force. You may convey covered works to others for the sole purpose
|
155 |
+
of having them make modifications exclusively for you, or provide you
|
156 |
+
with facilities for running those works, provided that you comply with
|
157 |
+
the terms of this License in conveying all material for which you do
|
158 |
+
not control copyright. Those thus making or running the covered works
|
159 |
+
for you must do so exclusively on your behalf, under your direction
|
160 |
+
and control, on terms that prohibit them from making any copies of
|
161 |
+
your copyrighted material outside their relationship with you.
|
162 |
+
|
163 |
+
Conveying under any other circumstances is permitted solely under
|
164 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
165 |
+
makes it unnecessary.
|
166 |
+
|
167 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
168 |
+
|
169 |
+
No covered work shall be deemed part of an effective technological
|
170 |
+
measure under any applicable law fulfilling obligations under article
|
171 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
172 |
+
similar laws prohibiting or restricting circumvention of such
|
173 |
+
measures.
|
174 |
+
|
175 |
+
When you convey a covered work, you waive any legal power to forbid
|
176 |
+
circumvention of technological measures to the extent such circumvention
|
177 |
+
is effected by exercising rights under this License with respect to
|
178 |
+
the covered work, and you disclaim any intention to limit operation or
|
179 |
+
modification of the work as a means of enforcing, against the work's
|
180 |
+
users, your or third parties' legal rights to forbid circumvention of
|
181 |
+
technological measures.
|
182 |
+
|
183 |
+
4. Conveying Verbatim Copies.
|
184 |
+
|
185 |
+
You may convey verbatim copies of the Program's source code as you
|
186 |
+
receive it, in any medium, provided that you conspicuously and
|
187 |
+
appropriately publish on each copy an appropriate copyright notice;
|
188 |
+
keep intact all notices stating that this License and any
|
189 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
190 |
+
keep intact all notices of the absence of any warranty; and give all
|
191 |
+
recipients a copy of this License along with the Program.
|
192 |
+
|
193 |
+
You may charge any price or no price for each copy that you convey,
|
194 |
+
and you may offer support or warranty protection for a fee.
|
195 |
+
|
196 |
+
5. Conveying Modified Source Versions.
|
197 |
+
|
198 |
+
You may convey a work based on the Program, or the modifications to
|
199 |
+
produce it from the Program, in the form of source code under the
|
200 |
+
terms of section 4, provided that you also meet all of these conditions:
|
201 |
+
|
202 |
+
a) The work must carry prominent notices stating that you modified
|
203 |
+
it, and giving a relevant date.
|
204 |
+
|
205 |
+
b) The work must carry prominent notices stating that it is
|
206 |
+
released under this License and any conditions added under section
|
207 |
+
7. This requirement modifies the requirement in section 4 to
|
208 |
+
"keep intact all notices".
|
209 |
+
|
210 |
+
c) You must license the entire work, as a whole, under this
|
211 |
+
License to anyone who comes into possession of a copy. This
|
212 |
+
License will therefore apply, along with any applicable section 7
|
213 |
+
additional terms, to the whole of the work, and all its parts,
|
214 |
+
regardless of how they are packaged. This License gives no
|
215 |
+
permission to license the work in any other way, but it does not
|
216 |
+
invalidate such permission if you have separately received it.
|
217 |
+
|
218 |
+
d) If the work has interactive user interfaces, each must display
|
219 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
220 |
+
interfaces that do not display Appropriate Legal Notices, your
|
221 |
+
work need not make them do so.
|
222 |
+
|
223 |
+
A compilation of a covered work with other separate and independent
|
224 |
+
works, which are not by their nature extensions of the covered work,
|
225 |
+
and which are not combined with it such as to form a larger program,
|
226 |
+
in or on a volume of a storage or distribution medium, is called an
|
227 |
+
"aggregate" if the compilation and its resulting copyright are not
|
228 |
+
used to limit the access or legal rights of the compilation's users
|
229 |
+
beyond what the individual works permit. Inclusion of a covered work
|
230 |
+
in an aggregate does not cause this License to apply to the other
|
231 |
+
parts of the aggregate.
|
232 |
+
|
233 |
+
6. Conveying Non-Source Forms.
|
234 |
+
|
235 |
+
You may convey a covered work in object code form under the terms
|
236 |
+
of sections 4 and 5, provided that you also convey the
|
237 |
+
machine-readable Corresponding Source under the terms of this License,
|
238 |
+
in one of these ways:
|
239 |
+
|
240 |
+
a) Convey the object code in, or embodied in, a physical product
|
241 |
+
(including a physical distribution medium), accompanied by the
|
242 |
+
Corresponding Source fixed on a durable physical medium
|
243 |
+
customarily used for software interchange.
|
244 |
+
|
245 |
+
b) Convey the object code in, or embodied in, a physical product
|
246 |
+
(including a physical distribution medium), accompanied by a
|
247 |
+
written offer, valid for at least three years and valid for as
|
248 |
+
long as you offer spare parts or customer support for that product
|
249 |
+
model, to give anyone who possesses the object code either (1) a
|
250 |
+
copy of the Corresponding Source for all the software in the
|
251 |
+
product that is covered by this License, on a durable physical
|
252 |
+
medium customarily used for software interchange, for a price no
|
253 |
+
more than your reasonable cost of physically performing this
|
254 |
+
conveying of source, or (2) access to copy the
|
255 |
+
Corresponding Source from a network server at no charge.
|
256 |
+
|
257 |
+
c) Convey individual copies of the object code with a copy of the
|
258 |
+
written offer to provide the Corresponding Source. This
|
259 |
+
alternative is allowed only occasionally and noncommercially, and
|
260 |
+
only if you received the object code with such an offer, in accord
|
261 |
+
with subsection 6b.
|
262 |
+
|
263 |
+
d) Convey the object code by offering access from a designated
|
264 |
+
place (gratis or for a charge), and offer equivalent access to the
|
265 |
+
Corresponding Source in the same way through the same place at no
|
266 |
+
further charge. You need not require recipients to copy the
|
267 |
+
Corresponding Source along with the object code. If the place to
|
268 |
+
copy the object code is a network server, the Corresponding Source
|
269 |
+
may be on a different server (operated by you or a third party)
|
270 |
+
that supports equivalent copying facilities, provided you maintain
|
271 |
+
clear directions next to the object code saying where to find the
|
272 |
+
Corresponding Source. Regardless of what server hosts the
|
273 |
+
Corresponding Source, you remain obligated to ensure that it is
|
274 |
+
available for as long as needed to satisfy these requirements.
|
275 |
+
|
276 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
277 |
+
you inform other peers where the object code and Corresponding
|
278 |
+
Source of the work are being offered to the general public at no
|
279 |
+
charge under subsection 6d.
|
280 |
+
|
281 |
+
A separable portion of the object code, whose source code is excluded
|
282 |
+
from the Corresponding Source as a System Library, need not be
|
283 |
+
included in conveying the object code work.
|
284 |
+
|
285 |
+
A "User Product" is either (1) a "consumer product", which means any
|
286 |
+
tangible personal property which is normally used for personal, family,
|
287 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
288 |
+
into a dwelling. In determining whether a product is a consumer product,
|
289 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
290 |
+
product received by a particular user, "normally used" refers to a
|
291 |
+
typical or common use of that class of product, regardless of the status
|
292 |
+
of the particular user or of the way in which the particular user
|
293 |
+
actually uses, or expects or is expected to use, the product. A product
|
294 |
+
is a consumer product regardless of whether the product has substantial
|
295 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
296 |
+
the only significant mode of use of the product.
|
297 |
+
|
298 |
+
"Installation Information" for a User Product means any methods,
|
299 |
+
procedures, authorization keys, or other information required to install
|
300 |
+
and execute modified versions of a covered work in that User Product from
|
301 |
+
a modified version of its Corresponding Source. The information must
|
302 |
+
suffice to ensure that the continued functioning of the modified object
|
303 |
+
code is in no case prevented or interfered with solely because
|
304 |
+
modification has been made.
|
305 |
+
|
306 |
+
If you convey an object code work under this section in, or with, or
|
307 |
+
specifically for use in, a User Product, and the conveying occurs as
|
308 |
+
part of a transaction in which the right of possession and use of the
|
309 |
+
User Product is transferred to the recipient in perpetuity or for a
|
310 |
+
fixed term (regardless of how the transaction is characterized), the
|
311 |
+
Corresponding Source conveyed under this section must be accompanied
|
312 |
+
by the Installation Information. But this requirement does not apply
|
313 |
+
if neither you nor any third party retains the ability to install
|
314 |
+
modified object code on the User Product (for example, the work has
|
315 |
+
been installed in ROM).
|
316 |
+
|
317 |
+
The requirement to provide Installation Information does not include a
|
318 |
+
requirement to continue to provide support service, warranty, or updates
|
319 |
+
for a work that has been modified or installed by the recipient, or for
|
320 |
+
the User Product in which it has been modified or installed. Access to a
|
321 |
+
network may be denied when the modification itself materially and
|
322 |
+
adversely affects the operation of the network or violates the rules and
|
323 |
+
protocols for communication across the network.
|
324 |
+
|
325 |
+
Corresponding Source conveyed, and Installation Information provided,
|
326 |
+
in accord with this section must be in a format that is publicly
|
327 |
+
documented (and with an implementation available to the public in
|
328 |
+
source code form), and must require no special password or key for
|
329 |
+
unpacking, reading or copying.
|
330 |
+
|
331 |
+
7. Additional Terms.
|
332 |
+
|
333 |
+
"Additional permissions" are terms that supplement the terms of this
|
334 |
+
License by making exceptions from one or more of its conditions.
|
335 |
+
Additional permissions that are applicable to the entire Program shall
|
336 |
+
be treated as though they were included in this License, to the extent
|
337 |
+
that they are valid under applicable law. If additional permissions
|
338 |
+
apply only to part of the Program, that part may be used separately
|
339 |
+
under those permissions, but the entire Program remains governed by
|
340 |
+
this License without regard to the additional permissions.
|
341 |
+
|
342 |
+
When you convey a copy of a covered work, you may at your option
|
343 |
+
remove any additional permissions from that copy, or from any part of
|
344 |
+
it. (Additional permissions may be written to require their own
|
345 |
+
removal in certain cases when you modify the work.) You may place
|
346 |
+
additional permissions on material, added by you to a covered work,
|
347 |
+
for which you have or can give appropriate copyright permission.
|
348 |
+
|
349 |
+
Notwithstanding any other provision of this License, for material you
|
350 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
351 |
+
that material) supplement the terms of this License with terms:
|
352 |
+
|
353 |
+
a) Disclaiming warranty or limiting liability differently from the
|
354 |
+
terms of sections 15 and 16 of this License; or
|
355 |
+
|
356 |
+
b) Requiring preservation of specified reasonable legal notices or
|
357 |
+
author attributions in that material or in the Appropriate Legal
|
358 |
+
Notices displayed by works containing it; or
|
359 |
+
|
360 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
361 |
+
requiring that modified versions of such material be marked in
|
362 |
+
reasonable ways as different from the original version; or
|
363 |
+
|
364 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
365 |
+
authors of the material; or
|
366 |
+
|
367 |
+
e) Declining to grant rights under trademark law for use of some
|
368 |
+
trade names, trademarks, or service marks; or
|
369 |
+
|
370 |
+
f) Requiring indemnification of licensors and authors of that
|
371 |
+
material by anyone who conveys the material (or modified versions of
|
372 |
+
it) with contractual assumptions of liability to the recipient, for
|
373 |
+
any liability that these contractual assumptions directly impose on
|
374 |
+
those licensors and authors.
|
375 |
+
|
376 |
+
All other non-permissive additional terms are considered "further
|
377 |
+
restrictions" within the meaning of section 10. If the Program as you
|
378 |
+
received it, or any part of it, contains a notice stating that it is
|
379 |
+
governed by this License along with a term that is a further
|
380 |
+
restriction, you may remove that term. If a license document contains
|
381 |
+
a further restriction but permits relicensing or conveying under this
|
382 |
+
License, you may add to a covered work material governed by the terms
|
383 |
+
of that license document, provided that the further restriction does
|
384 |
+
not survive such relicensing or conveying.
|
385 |
+
|
386 |
+
If you add terms to a covered work in accord with this section, you
|
387 |
+
must place, in the relevant source files, a statement of the
|
388 |
+
additional terms that apply to those files, or a notice indicating
|
389 |
+
where to find the applicable terms.
|
390 |
+
|
391 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
392 |
+
form of a separately written license, or stated as exceptions;
|
393 |
+
the above requirements apply either way.
|
394 |
+
|
395 |
+
8. Termination.
|
396 |
+
|
397 |
+
You may not propagate or modify a covered work except as expressly
|
398 |
+
provided under this License. Any attempt otherwise to propagate or
|
399 |
+
modify it is void, and will automatically terminate your rights under
|
400 |
+
this License (including any patent licenses granted under the third
|
401 |
+
paragraph of section 11).
|
402 |
+
|
403 |
+
However, if you cease all violation of this License, then your
|
404 |
+
license from a particular copyright holder is reinstated (a)
|
405 |
+
provisionally, unless and until the copyright holder explicitly and
|
406 |
+
finally terminates your license, and (b) permanently, if the copyright
|
407 |
+
holder fails to notify you of the violation by some reasonable means
|
408 |
+
prior to 60 days after the cessation.
|
409 |
+
|
410 |
+
Moreover, your license from a particular copyright holder is
|
411 |
+
reinstated permanently if the copyright holder notifies you of the
|
412 |
+
violation by some reasonable means, this is the first time you have
|
413 |
+
received notice of violation of this License (for any work) from that
|
414 |
+
copyright holder, and you cure the violation prior to 30 days after
|
415 |
+
your receipt of the notice.
|
416 |
+
|
417 |
+
Termination of your rights under this section does not terminate the
|
418 |
+
licenses of parties who have received copies or rights from you under
|
419 |
+
this License. If your rights have been terminated and not permanently
|
420 |
+
reinstated, you do not qualify to receive new licenses for the same
|
421 |
+
material under section 10.
|
422 |
+
|
423 |
+
9. Acceptance Not Required for Having Copies.
|
424 |
+
|
425 |
+
You are not required to accept this License in order to receive or
|
426 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
427 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
428 |
+
to receive a copy likewise does not require acceptance. However,
|
429 |
+
nothing other than this License grants you permission to propagate or
|
430 |
+
modify any covered work. These actions infringe copyright if you do
|
431 |
+
not accept this License. Therefore, by modifying or propagating a
|
432 |
+
covered work, you indicate your acceptance of this License to do so.
|
433 |
+
|
434 |
+
10. Automatic Licensing of Downstream Recipients.
|
435 |
+
|
436 |
+
Each time you convey a covered work, the recipient automatically
|
437 |
+
receives a license from the original licensors, to run, modify and
|
438 |
+
propagate that work, subject to this License. You are not responsible
|
439 |
+
for enforcing compliance by third parties with this License.
|
440 |
+
|
441 |
+
An "entity transaction" is a transaction transferring control of an
|
442 |
+
organization, or substantially all assets of one, or subdividing an
|
443 |
+
organization, or merging organizations. If propagation of a covered
|
444 |
+
work results from an entity transaction, each party to that
|
445 |
+
transaction who receives a copy of the work also receives whatever
|
446 |
+
licenses to the work the party's predecessor in interest had or could
|
447 |
+
give under the previous paragraph, plus a right to possession of the
|
448 |
+
Corresponding Source of the work from the predecessor in interest, if
|
449 |
+
the predecessor has it or can get it with reasonable efforts.
|
450 |
+
|
451 |
+
You may not impose any further restrictions on the exercise of the
|
452 |
+
rights granted or affirmed under this License. For example, you may
|
453 |
+
not impose a license fee, royalty, or other charge for exercise of
|
454 |
+
rights granted under this License, and you may not initiate litigation
|
455 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
456 |
+
any patent claim is infringed by making, using, selling, offering for
|
457 |
+
sale, or importing the Program or any portion of it.
|
458 |
+
|
459 |
+
11. Patents.
|
460 |
+
|
461 |
+
A "contributor" is a copyright holder who authorizes use under this
|
462 |
+
License of the Program or a work on which the Program is based. The
|
463 |
+
work thus licensed is called the contributor's "contributor version".
|
464 |
+
|
465 |
+
A contributor's "essential patent claims" are all patent claims
|
466 |
+
owned or controlled by the contributor, whether already acquired or
|
467 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
468 |
+
by this License, of making, using, or selling its contributor version,
|
469 |
+
but do not include claims that would be infringed only as a
|
470 |
+
consequence of further modification of the contributor version. For
|
471 |
+
purposes of this definition, "control" includes the right to grant
|
472 |
+
patent sublicenses in a manner consistent with the requirements of
|
473 |
+
this License.
|
474 |
+
|
475 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
476 |
+
patent license under the contributor's essential patent claims, to
|
477 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
478 |
+
propagate the contents of its contributor version.
|
479 |
+
|
480 |
+
In the following three paragraphs, a "patent license" is any express
|
481 |
+
agreement or commitment, however denominated, not to enforce a patent
|
482 |
+
(such as an express permission to practice a patent or covenant not to
|
483 |
+
sue for patent infringement). To "grant" such a patent license to a
|
484 |
+
party means to make such an agreement or commitment not to enforce a
|
485 |
+
patent against the party.
|
486 |
+
|
487 |
+
If you convey a covered work, knowingly relying on a patent license,
|
488 |
+
and the Corresponding Source of the work is not available for anyone
|
489 |
+
to copy, free of charge and under the terms of this License, through a
|
490 |
+
publicly available network server or other readily accessible means,
|
491 |
+
then you must either (1) cause the Corresponding Source to be so
|
492 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
493 |
+
patent license for this particular work, or (3) arrange, in a manner
|
494 |
+
consistent with the requirements of this License, to extend the patent
|
495 |
+
license to downstream recipients. "Knowingly relying" means you have
|
496 |
+
actual knowledge that, but for the patent license, your conveying the
|
497 |
+
covered work in a country, or your recipient's use of the covered work
|
498 |
+
in a country, would infringe one or more identifiable patents in that
|
499 |
+
country that you have reason to believe are valid.
|
500 |
+
|
501 |
+
If, pursuant to or in connection with a single transaction or
|
502 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
503 |
+
covered work, and grant a patent license to some of the parties
|
504 |
+
receiving the covered work authorizing them to use, propagate, modify
|
505 |
+
or convey a specific copy of the covered work, then the patent license
|
506 |
+
you grant is automatically extended to all recipients of the covered
|
507 |
+
work and works based on it.
|
508 |
+
|
509 |
+
A patent license is "discriminatory" if it does not include within
|
510 |
+
the scope of its coverage, prohibits the exercise of, or is
|
511 |
+
conditioned on the non-exercise of one or more of the rights that are
|
512 |
+
specifically granted under this License. You may not convey a covered
|
513 |
+
work if you are a party to an arrangement with a third party that is
|
514 |
+
in the business of distributing software, under which you make payment
|
515 |
+
to the third party based on the extent of your activity of conveying
|
516 |
+
the work, and under which the third party grants, to any of the
|
517 |
+
parties who would receive the covered work from you, a discriminatory
|
518 |
+
patent license (a) in connection with copies of the covered work
|
519 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
520 |
+
for and in connection with specific products or compilations that
|
521 |
+
contain the covered work, unless you entered into that arrangement,
|
522 |
+
or that patent license was granted, prior to 28 March 2007.
|
523 |
+
|
524 |
+
Nothing in this License shall be construed as excluding or limiting
|
525 |
+
any implied license or other defenses to infringement that may
|
526 |
+
otherwise be available to you under applicable patent law.
|
527 |
+
|
528 |
+
12. No Surrender of Others' Freedom.
|
529 |
+
|
530 |
+
If conditions are imposed on you (whether by court order, agreement or
|
531 |
+
otherwise) that contradict the conditions of this License, they do not
|
532 |
+
excuse you from the conditions of this License. If you cannot convey a
|
533 |
+
covered work so as to satisfy simultaneously your obligations under this
|
534 |
+
License and any other pertinent obligations, then as a consequence you may
|
535 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
536 |
+
to collect a royalty for further conveying from those to whom you convey
|
537 |
+
the Program, the only way you could satisfy both those terms and this
|
538 |
+
License would be to refrain entirely from conveying the Program.
|
539 |
+
|
540 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
541 |
+
|
542 |
+
Notwithstanding any other provision of this License, if you modify the
|
543 |
+
Program, your modified version must prominently offer all users
|
544 |
+
interacting with it remotely through a computer network (if your version
|
545 |
+
supports such interaction) an opportunity to receive the Corresponding
|
546 |
+
Source of your version by providing access to the Corresponding Source
|
547 |
+
from a network server at no charge, through some standard or customary
|
548 |
+
means of facilitating copying of software. This Corresponding Source
|
549 |
+
shall include the Corresponding Source for any work covered by version 3
|
550 |
+
of the GNU General Public License that is incorporated pursuant to the
|
551 |
+
following paragraph.
|
552 |
+
|
553 |
+
Notwithstanding any other provision of this License, you have
|
554 |
+
permission to link or combine any covered work with a work licensed
|
555 |
+
under version 3 of the GNU General Public License into a single
|
556 |
+
combined work, and to convey the resulting work. The terms of this
|
557 |
+
License will continue to apply to the part which is the covered work,
|
558 |
+
but the work with which it is combined will remain governed by version
|
559 |
+
3 of the GNU General Public License.
|
560 |
+
|
561 |
+
14. Revised Versions of this License.
|
562 |
+
|
563 |
+
The Free Software Foundation may publish revised and/or new versions of
|
564 |
+
the GNU Affero General Public License from time to time. Such new versions
|
565 |
+
will be similar in spirit to the present version, but may differ in detail to
|
566 |
+
address new problems or concerns.
|
567 |
+
|
568 |
+
Each version is given a distinguishing version number. If the
|
569 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
570 |
+
Public License "or any later version" applies to it, you have the
|
571 |
+
option of following the terms and conditions either of that numbered
|
572 |
+
version or of any later version published by the Free Software
|
573 |
+
Foundation. If the Program does not specify a version number of the
|
574 |
+
GNU Affero General Public License, you may choose any version ever published
|
575 |
+
by the Free Software Foundation.
|
576 |
+
|
577 |
+
If the Program specifies that a proxy can decide which future
|
578 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
579 |
+
public statement of acceptance of a version permanently authorizes you
|
580 |
+
to choose that version for the Program.
|
581 |
+
|
582 |
+
Later license versions may give you additional or different
|
583 |
+
permissions. However, no additional obligations are imposed on any
|
584 |
+
author or copyright holder as a result of your choosing to follow a
|
585 |
+
later version.
|
586 |
+
|
587 |
+
15. Disclaimer of Warranty.
|
588 |
+
|
589 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
590 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
591 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
592 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
593 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
594 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
595 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
596 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
597 |
+
|
598 |
+
16. Limitation of Liability.
|
599 |
+
|
600 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
601 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
602 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
603 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
604 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
605 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
606 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
607 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
608 |
+
SUCH DAMAGES.
|
609 |
+
|
610 |
+
17. Interpretation of Sections 15 and 16.
|
611 |
+
|
612 |
+
If the disclaimer of warranty and limitation of liability provided
|
613 |
+
above cannot be given local legal effect according to their terms,
|
614 |
+
reviewing courts shall apply local law that most closely approximates
|
615 |
+
an absolute waiver of all civil liability in connection with the
|
616 |
+
Program, unless a warranty or assumption of liability accompanies a
|
617 |
+
copy of the Program in return for a fee.
|
618 |
+
|
619 |
+
END OF TERMS AND CONDITIONS
|
620 |
+
|
621 |
+
How to Apply These Terms to Your New Programs
|
622 |
+
|
623 |
+
If you develop a new program, and you want it to be of the greatest
|
624 |
+
possible use to the public, the best way to achieve this is to make it
|
625 |
+
free software which everyone can redistribute and change under these terms.
|
626 |
+
|
627 |
+
To do so, attach the following notices to the program. It is safest
|
628 |
+
to attach them to the start of each source file to most effectively
|
629 |
+
state the exclusion of warranty; and each file should have at least
|
630 |
+
the "copyright" line and a pointer to where the full notice is found.
|
631 |
+
|
632 |
+
<one line to give the program's name and a brief idea of what it does.>
|
633 |
+
Copyright (C) <year> <name of author>
|
634 |
+
|
635 |
+
This program is free software: you can redistribute it and/or modify
|
636 |
+
it under the terms of the GNU Affero General Public License as published
|
637 |
+
by the Free Software Foundation, either version 3 of the License, or
|
638 |
+
(at your option) any later version.
|
639 |
+
|
640 |
+
This program is distributed in the hope that it will be useful,
|
641 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
642 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
643 |
+
GNU Affero General Public License for more details.
|
644 |
+
|
645 |
+
You should have received a copy of the GNU Affero General Public License
|
646 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
647 |
+
|
648 |
+
Also add information on how to contact you by electronic and paper mail.
|
649 |
+
|
650 |
+
If your software can interact with users remotely through a computer
|
651 |
+
network, you should also make sure that it provides a way for users to
|
652 |
+
get its source. For example, if your program is a web application, its
|
653 |
+
interface could display a "Source" link that leads users to an archive
|
654 |
+
of the code. There are many ways you could offer source, and different
|
655 |
+
solutions will be better for different programs; see section 13 for the
|
656 |
+
specific requirements.
|
657 |
+
|
658 |
+
You should also get your employer (if you work as a programmer) or school,
|
659 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
660 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
661 |
+
<https://www.gnu.org/licenses/>.
|
README.md
CHANGED
@@ -1,14 +1,253 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# roop-unleashed
|
2 |
+
|
3 |
+
[Changelog](#changelog) • [Usage](#usage) • [Wiki](https://github.com/C0untFloyd/roop-unleashed/wiki)
|
4 |
+
|
5 |
+
|
6 |
+
Uncensored Deepfakes for images and videos without training and an easy-to-use GUI.
|
7 |
+
|
8 |
+
|
9 |
+
![Screen](https://github.com/C0untFloyd/roop-unleashed/assets/131583554/6ee6860d-efbe-4337-8c62-a67598863637)
|
10 |
+
|
11 |
+
### Features
|
12 |
+
|
13 |
+
- Platform-independant Browser GUI
|
14 |
+
- Selection of multiple input/output faces in one go
|
15 |
+
- Many different swapping modes, first detected, face selections, by gender
|
16 |
+
- Batch processing of images/videos
|
17 |
+
- Masking of face occluders using text prompts or automatically
|
18 |
+
- Optional Face Upscaler/Restoration using different enhancers
|
19 |
+
- Preview swapping from different video frames
|
20 |
+
- Live Fake Cam using your webcam
|
21 |
+
- Extras Tab for cutting videos etc.
|
22 |
+
- Settings - storing configuration for next session
|
23 |
+
- Theme Support
|
24 |
+
|
25 |
+
and lots more...
|
26 |
+
|
27 |
+
|
28 |
+
## Disclaimer
|
29 |
+
|
30 |
+
This project is for technical and academic use only.
|
31 |
+
Users of this software are expected to use this software responsibly while abiding the local law. If a face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. Developers of this software will not be responsible for actions of end-users.
|
32 |
+
**Please do not apply it to illegal and unethical scenarios.**
|
33 |
+
|
34 |
+
In the event of violation of the legal and ethical requirements of the user's country or region, this code repository is exempt from liability
|
35 |
+
|
36 |
+
### Installation
|
37 |
+
|
38 |
+
Please refer to the [wiki](https://github.com/C0untFloyd/roop-unleashed/wiki).
|
39 |
+
|
40 |
+
#### macOS Installation
|
41 |
+
Simply run the following command. It will check and install all dependencies if necessary.
|
42 |
+
|
43 |
+
`/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/PJF16/roop-unleashed/master/installer/macOSinstaller.sh)"`
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
### Usage
|
48 |
+
|
49 |
+
- Windows: run the `windows_run.bat` from the Installer.
|
50 |
+
- Linux: `python run.py`
|
51 |
+
- macOS: `sh runMacOS.sh`
|
52 |
+
- Dockerfile:
|
53 |
+
```shell
|
54 |
+
docker build -t roop-unleashed . && docker run -t \
|
55 |
+
-p 7860:7860 \
|
56 |
+
-v ./config.yaml:/app/config.yaml \
|
57 |
+
-v ./models:/app/models \
|
58 |
+
-v ./temp:/app/temp \
|
59 |
+
-v ./output:/app/output \
|
60 |
+
roop-unleashed
|
61 |
+
```
|
62 |
+
|
63 |
+
<a target="_blank" href="https://colab.research.google.com/github/C0untFloyd/roop-unleashed/blob/main/roop-unleashed.ipynb">
|
64 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
65 |
+
</a>
|
66 |
+
|
67 |
+
|
68 |
+
Additional commandline arguments are currently unsupported and settings should be done via the UI.
|
69 |
+
|
70 |
+
> Note: When you run this program for the first time, it will download some models roughly ~2Gb in size.
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
### Changelog
|
76 |
+
|
77 |
+
**31.12.2024** v4.4.0 Hotfix
|
78 |
+
|
79 |
+
Bugfix: Updated Colab to use present Cuda Drivers
|
80 |
+
Bugfix: Live-Cam not working because of new face swapper
|
81 |
+
Set default swapping model back to Insightface
|
82 |
+
|
83 |
+
Happy New Year!
|
84 |
+
|
85 |
+
|
86 |
+
**30.12.2024** v4.4.0
|
87 |
+
|
88 |
+
- Added random face selection mode
|
89 |
+
- Added alternative face swapping model with 128px & 256 px output ([ReSwapper](https://github.com/somanchiu/ReSwapper/tree/main))
|
90 |
+
- Video repair added to Extras Tab
|
91 |
+
- Updated most packages to newer versions. CUDA >= 12.4 now required!
|
92 |
+
- Several minor bugfixes and QoL Changes
|
93 |
+
|
94 |
+
|
95 |
+
**28.9.2024** v4.3.1
|
96 |
+
|
97 |
+
- Bugfix: Several possible memory leaks
|
98 |
+
- Added different output modes, e.g. to virtual cam stream
|
99 |
+
- New swapping mode "All input faces"
|
100 |
+
- Average total fps displayed and setting for autorun
|
101 |
+
|
102 |
+
|
103 |
+
**16.9.2024** v4.2.8
|
104 |
+
|
105 |
+
- Bugfix: Starting roop-unleashed without NVIDIA gpu but cuda option enabled
|
106 |
+
- Bugfix: Target Faces couldn't be moved left/right
|
107 |
+
- Bugfix: Enhancement and upscaling working again in virtual cam
|
108 |
+
- Corrupt videos caught when adding to target files, displaying warning msg
|
109 |
+
- Source Files Component cleared after face detection to release temp files
|
110 |
+
- Added masking and mouth restore options to virtual cam
|
111 |
+
|
112 |
+
|
113 |
+
**9.9.2024** v4.2.3
|
114 |
+
|
115 |
+
- Hotfix for gradio pydantic issue with fastapi
|
116 |
+
- Upgraded to Gradio 4.43 hoping it will fix remaining issues
|
117 |
+
- Added new action when no face detected -> use last swapped
|
118 |
+
- Specified image format for image controls - opening new tabs on preview images possible again!
|
119 |
+
- Hardcoded image output format for livecam to jpeg - might be faster than previous webp
|
120 |
+
- Chain events to be only executed if previous was a success
|
121 |
+
|
122 |
+
|
123 |
+
**5.9.2024** v4.2.0
|
124 |
+
|
125 |
+
- Added ability to move input & target faces order
|
126 |
+
- New CLI Arguments override settings
|
127 |
+
- Small UI changes to faceswapping tab
|
128 |
+
- Added mask option and code for restoration of original mouth area
|
129 |
+
- Updated gradio to v4.42.0
|
130 |
+
- Added CLI Arguments --server_share and --cuda_device_id
|
131 |
+
- Added webp image support
|
132 |
+
|
133 |
+
|
134 |
+
**15.07.2024** v4.1.1
|
135 |
+
|
136 |
+
- Bugfix: Post-processing after swapping
|
137 |
+
|
138 |
+
|
139 |
+
**14.07.2024** v4.1.0
|
140 |
+
|
141 |
+
- Added subsample upscaling to increase swap resolution
|
142 |
+
- Upgraded gradio
|
143 |
+
|
144 |
+
|
145 |
+
**12.05.2024** v4.0.0
|
146 |
+
|
147 |
+
- Bugfix: Unnecessary init every frame in live-cam
|
148 |
+
- Bugfix: Installer downloading insightface package each run
|
149 |
+
- Added xseg masking to live-cam
|
150 |
+
- Added realesrganx2 to frame processors
|
151 |
+
- Upgraded some requirements
|
152 |
+
- Added subtypes and different model support to frame processors
|
153 |
+
- Allow frame processors to change resolutions of videos
|
154 |
+
- Different OpenCV Cap for MacOS Virtual Cam
|
155 |
+
- Added complete frame processing to extras tab
|
156 |
+
- Colorize, upscale and misc filters added
|
157 |
+
|
158 |
+
|
159 |
+
**22.04.2024** v3.9.0
|
160 |
+
|
161 |
+
- Bugfix: Face detection bounding box corrupt values at weird angles
|
162 |
+
- Rewrote mask previewing to work with every model
|
163 |
+
- Switching mask engines toggles text interactivity
|
164 |
+
- Clearing target files, resets face selection dropdown
|
165 |
+
- Massive rewrite of swapping architecture, needed for xseg implementation
|
166 |
+
- Added DFL Xseg Support for partial face occlusion
|
167 |
+
- Face masking only runs when there is a face detected
|
168 |
+
- Removed unnecessary toggle checkbox for text masking
|
169 |
+
|
170 |
+
|
171 |
+
**22.03.2024** v3.6.5
|
172 |
+
|
173 |
+
- Bugfix: Installer pulling latest update on first installation
|
174 |
+
- Bugfix: Regression issue, blurring/erosion missing from face swap
|
175 |
+
- Exposed erosion and blur amounts to UI
|
176 |
+
- Using same values for manual masking too
|
177 |
+
|
178 |
+
|
179 |
+
**20.03.2024** v3.6.3
|
180 |
+
|
181 |
+
- Bugfix: Workaround for Gradio Slider Change Bug
|
182 |
+
- Bugfix: CSS Styling to fix Gradio Image Height Bug
|
183 |
+
- Made face swapping mask offsets resolution independant
|
184 |
+
- Show offset mask as overlay
|
185 |
+
- Changed layout for masking
|
186 |
+
|
187 |
+
|
188 |
+
**18.03.2024** v3.6.0
|
189 |
+
|
190 |
+
- Updated to Gradio 4.21.0 - requiring many changes under the hood
|
191 |
+
- New manual masking (draw the mask yourself)
|
192 |
+
- Extras Tab, streamlined cutting/joining videos
|
193 |
+
- Re-added face selection by gender (on-demand loading, default turned off)
|
194 |
+
- Removed unnecessary activate live-cam option
|
195 |
+
- Added time info to preview frame and changed frame slider event to allow faster changes
|
196 |
+
|
197 |
+
|
198 |
+
**10.03.2024** v3.5.5
|
199 |
+
|
200 |
+
- Bugfix: Installer Path Env
|
201 |
+
- Bugfix: file attributes
|
202 |
+
- Video processing checks for presence of ffmpeg and displays warning if not found
|
203 |
+
- Removed gender + age detection to speed up processing. Option removed from UI
|
204 |
+
- Replaced restoreformer with restoreformer++
|
205 |
+
- Live Cam recoded to run separate from virtual cam and without blocking controls
|
206 |
+
- Swapping with only 1 target face allows selecting from several input faces
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
**08.01.2024** v3.5.0
|
211 |
+
|
212 |
+
- Bugfix: wrong access options when creating folders
|
213 |
+
- New auto rotation of horizontal faces, fixing bad landmark positions (expanded on ![PR 364](https://github.com/C0untFloyd/roop-unleashed/pull/364))
|
214 |
+
- Simple VR Option for stereo Images/Movies, best used in selected face mode
|
215 |
+
- Added RestoreFormer Enhancer - https://github.com/wzhouxiff/RestoreFormer
|
216 |
+
- Bumped up package versions for onnx/Torch etc.
|
217 |
+
|
218 |
+
|
219 |
+
**16.10.2023** v3.3.4
|
220 |
+
|
221 |
+
**11.8.2023** v2.7.0
|
222 |
+
|
223 |
+
Initial Gradio Version - old TkInter Version now deprecated
|
224 |
+
|
225 |
+
- Re-added unified padding to face enhancers
|
226 |
+
- Fixed DMDNet for all resolutions
|
227 |
+
- Selecting target face now automatically switches swapping mode to selected
|
228 |
+
- GPU providers are correctly set using the GUI (needs restart currently)
|
229 |
+
- Local output folder can be opened from page
|
230 |
+
- Unfinished extras functions disabled for now
|
231 |
+
- Installer checks out specific commit, allowing to go back to first install
|
232 |
+
- Updated readme for new gradio version
|
233 |
+
- Updated Colab
|
234 |
+
|
235 |
+
|
236 |
+
# Acknowledgements
|
237 |
+
|
238 |
+
Lots of ideas, code or pre-trained models borrowed from the following projects:
|
239 |
+
|
240 |
+
https://github.com/deepinsight/insightface<br />
|
241 |
+
https://github.com/s0md3v/roop<br />
|
242 |
+
https://github.com/AUTOMATIC1111/stable-diffusion-webui<br />
|
243 |
+
https://github.com/Hillobar/Rope<br />
|
244 |
+
https://github.com/TencentARC/GFPGAN<br />
|
245 |
+
https://github.com/kadirnar/codeformer-pip<br />
|
246 |
+
https://github.com/csxmli2016/DMDNet<br />
|
247 |
+
https://github.com/glucauze/sd-webui-faceswaplab<br />
|
248 |
+
https://github.com/ykk648/face_power<br />
|
249 |
+
|
250 |
+
<br />
|
251 |
+
<br />
|
252 |
+
Thanks to all developers!
|
253 |
+
|
clip/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .clip import *
|
clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
clip/clip.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Union, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from .model import build_model
|
13 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
14 |
+
|
15 |
+
try:
|
16 |
+
from torchvision.transforms import InterpolationMode
|
17 |
+
BICUBIC = InterpolationMode.BICUBIC
|
18 |
+
except ImportError:
|
19 |
+
BICUBIC = Image.BICUBIC
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = ["available_models", "load", "tokenize"]
|
24 |
+
_tokenizer = _Tokenizer()
|
25 |
+
|
26 |
+
_MODELS = {
|
27 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
28 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
29 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
30 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
31 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
32 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
33 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
34 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
35 |
+
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def _download(url: str, root: str):
|
40 |
+
os.makedirs(root, exist_ok=True)
|
41 |
+
filename = os.path.basename(url)
|
42 |
+
|
43 |
+
expected_sha256 = url.split("/")[-2]
|
44 |
+
download_target = os.path.join(root, filename)
|
45 |
+
|
46 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
47 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
48 |
+
|
49 |
+
if os.path.isfile(download_target):
|
50 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
51 |
+
return download_target
|
52 |
+
else:
|
53 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
54 |
+
|
55 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
56 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
57 |
+
while True:
|
58 |
+
buffer = source.read(8192)
|
59 |
+
if not buffer:
|
60 |
+
break
|
61 |
+
|
62 |
+
output.write(buffer)
|
63 |
+
loop.update(len(buffer))
|
64 |
+
|
65 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
66 |
+
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
|
67 |
+
|
68 |
+
return download_target
|
69 |
+
|
70 |
+
|
71 |
+
def _convert_image_to_rgb(image):
|
72 |
+
return image.convert("RGB")
|
73 |
+
|
74 |
+
|
75 |
+
def _transform(n_px):
|
76 |
+
return Compose([
|
77 |
+
Resize(n_px, interpolation=BICUBIC),
|
78 |
+
CenterCrop(n_px),
|
79 |
+
_convert_image_to_rgb,
|
80 |
+
ToTensor(),
|
81 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
82 |
+
])
|
83 |
+
|
84 |
+
|
85 |
+
def available_models() -> List[str]:
|
86 |
+
"""Returns the names of available CLIP models"""
|
87 |
+
return list(_MODELS.keys())
|
88 |
+
|
89 |
+
|
90 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
|
91 |
+
"""Load a CLIP model
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
name : str
|
96 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
97 |
+
|
98 |
+
device : Union[str, torch.device]
|
99 |
+
The device to put the loaded model
|
100 |
+
|
101 |
+
jit : bool
|
102 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
103 |
+
|
104 |
+
download_root: str
|
105 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
106 |
+
|
107 |
+
Returns
|
108 |
+
-------
|
109 |
+
model : torch.nn.Module
|
110 |
+
The CLIP model
|
111 |
+
|
112 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
113 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
114 |
+
"""
|
115 |
+
if name in _MODELS:
|
116 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
117 |
+
elif os.path.isfile(name):
|
118 |
+
model_path = name
|
119 |
+
else:
|
120 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
121 |
+
|
122 |
+
with open(model_path, 'rb') as opened_file:
|
123 |
+
try:
|
124 |
+
# loading JIT archive
|
125 |
+
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
|
126 |
+
state_dict = None
|
127 |
+
except RuntimeError:
|
128 |
+
# loading saved state dict
|
129 |
+
if jit:
|
130 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
131 |
+
jit = False
|
132 |
+
state_dict = torch.load(opened_file, map_location="cpu")
|
133 |
+
|
134 |
+
if not jit:
|
135 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
136 |
+
if str(device) == "cpu":
|
137 |
+
model.float()
|
138 |
+
return model, _transform(model.visual.input_resolution)
|
139 |
+
|
140 |
+
# patch the device names
|
141 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
142 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
143 |
+
|
144 |
+
def _node_get(node: torch._C.Node, key: str):
|
145 |
+
"""Gets attributes of a node which is polymorphic over return type.
|
146 |
+
|
147 |
+
From https://github.com/pytorch/pytorch/pull/82628
|
148 |
+
"""
|
149 |
+
sel = node.kindOf(key)
|
150 |
+
return getattr(node, sel)(key)
|
151 |
+
|
152 |
+
def patch_device(module):
|
153 |
+
try:
|
154 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
155 |
+
except RuntimeError:
|
156 |
+
graphs = []
|
157 |
+
|
158 |
+
if hasattr(module, "forward1"):
|
159 |
+
graphs.append(module.forward1.graph)
|
160 |
+
|
161 |
+
for graph in graphs:
|
162 |
+
for node in graph.findAllNodes("prim::Constant"):
|
163 |
+
if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"):
|
164 |
+
node.copyAttributes(device_node)
|
165 |
+
|
166 |
+
model.apply(patch_device)
|
167 |
+
patch_device(model.encode_image)
|
168 |
+
patch_device(model.encode_text)
|
169 |
+
|
170 |
+
# patch dtype to float32 on CPU
|
171 |
+
if str(device) == "cpu":
|
172 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
173 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
174 |
+
float_node = float_input.node()
|
175 |
+
|
176 |
+
def patch_float(module):
|
177 |
+
try:
|
178 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
179 |
+
except RuntimeError:
|
180 |
+
graphs = []
|
181 |
+
|
182 |
+
if hasattr(module, "forward1"):
|
183 |
+
graphs.append(module.forward1.graph)
|
184 |
+
|
185 |
+
for graph in graphs:
|
186 |
+
for node in graph.findAllNodes("aten::to"):
|
187 |
+
inputs = list(node.inputs())
|
188 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
189 |
+
if _node_get(inputs[i].node(), "value") == 5:
|
190 |
+
inputs[i].node().copyAttributes(float_node)
|
191 |
+
|
192 |
+
model.apply(patch_float)
|
193 |
+
patch_float(model.encode_image)
|
194 |
+
patch_float(model.encode_text)
|
195 |
+
|
196 |
+
model.float()
|
197 |
+
|
198 |
+
return model, _transform(model.input_resolution.item())
|
199 |
+
|
200 |
+
|
201 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
|
202 |
+
"""
|
203 |
+
Returns the tokenized representation of given input string(s)
|
204 |
+
|
205 |
+
Parameters
|
206 |
+
----------
|
207 |
+
texts : Union[str, List[str]]
|
208 |
+
An input string or a list of input strings to tokenize
|
209 |
+
|
210 |
+
context_length : int
|
211 |
+
The context length to use; all CLIP models use 77 as the context length
|
212 |
+
|
213 |
+
truncate: bool
|
214 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
215 |
+
|
216 |
+
Returns
|
217 |
+
-------
|
218 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
|
219 |
+
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
|
220 |
+
"""
|
221 |
+
if isinstance(texts, str):
|
222 |
+
texts = [texts]
|
223 |
+
|
224 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
225 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
226 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
227 |
+
#if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
|
228 |
+
# result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
229 |
+
#else:
|
230 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
|
231 |
+
|
232 |
+
for i, tokens in enumerate(all_tokens):
|
233 |
+
if len(tokens) > context_length:
|
234 |
+
if truncate:
|
235 |
+
tokens = tokens[:context_length]
|
236 |
+
tokens[-1] = eot_token
|
237 |
+
else:
|
238 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
239 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
240 |
+
|
241 |
+
return result
|
clip/clipseg.py
ADDED
@@ -0,0 +1,538 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from os.path import basename, dirname, join, isfile
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as nnf
|
6 |
+
from torch.nn.modules.activation import ReLU
|
7 |
+
|
8 |
+
|
9 |
+
def get_prompt_list(prompt):
|
10 |
+
if prompt == 'plain':
|
11 |
+
return ['{}']
|
12 |
+
elif prompt == 'fixed':
|
13 |
+
return ['a photo of a {}.']
|
14 |
+
elif prompt == 'shuffle':
|
15 |
+
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
|
16 |
+
elif prompt == 'shuffle+':
|
17 |
+
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
|
18 |
+
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
|
19 |
+
'a bad photo of a {}.', 'a photo of the {}.']
|
20 |
+
else:
|
21 |
+
raise ValueError('Invalid value for prompt')
|
22 |
+
|
23 |
+
|
24 |
+
def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
|
25 |
+
"""
|
26 |
+
Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
|
27 |
+
The mlp and layer norm come from CLIP.
|
28 |
+
x: input.
|
29 |
+
b: multihead attention module.
|
30 |
+
"""
|
31 |
+
|
32 |
+
x_ = b.ln_1(x)
|
33 |
+
q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
|
34 |
+
tgt_len, bsz, embed_dim = q.size()
|
35 |
+
|
36 |
+
head_dim = embed_dim // b.attn.num_heads
|
37 |
+
scaling = float(head_dim) ** -0.5
|
38 |
+
|
39 |
+
q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
40 |
+
k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
41 |
+
v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
42 |
+
|
43 |
+
q = q * scaling
|
44 |
+
|
45 |
+
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2
|
46 |
+
if attn_mask is not None:
|
47 |
+
|
48 |
+
|
49 |
+
attn_mask_type, attn_mask = attn_mask
|
50 |
+
n_heads = attn_output_weights.size(0) // attn_mask.size(0)
|
51 |
+
attn_mask = attn_mask.repeat(n_heads, 1)
|
52 |
+
|
53 |
+
if attn_mask_type == 'cls_token':
|
54 |
+
# the mask only affects similarities compared to the readout-token.
|
55 |
+
attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
|
56 |
+
# attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
|
57 |
+
|
58 |
+
if attn_mask_type == 'all':
|
59 |
+
# print(attn_output_weights.shape, attn_mask[:, None].shape)
|
60 |
+
attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
|
61 |
+
|
62 |
+
|
63 |
+
attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
|
64 |
+
|
65 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
66 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
67 |
+
attn_output = b.attn.out_proj(attn_output)
|
68 |
+
|
69 |
+
x = x + attn_output
|
70 |
+
x = x + b.mlp(b.ln_2(x))
|
71 |
+
|
72 |
+
if with_aff:
|
73 |
+
return x, attn_output_weights
|
74 |
+
else:
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class CLIPDenseBase(nn.Module):
|
79 |
+
|
80 |
+
def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
|
81 |
+
super().__init__()
|
82 |
+
|
83 |
+
import clip
|
84 |
+
|
85 |
+
# prec = torch.FloatTensor
|
86 |
+
self.clip_model, _ = clip.load(version, device='cpu', jit=False)
|
87 |
+
self.model = self.clip_model.visual
|
88 |
+
|
89 |
+
# if not None, scale conv weights such that we obtain n_tokens.
|
90 |
+
self.n_tokens = n_tokens
|
91 |
+
|
92 |
+
for p in self.clip_model.parameters():
|
93 |
+
p.requires_grad_(False)
|
94 |
+
|
95 |
+
# conditional
|
96 |
+
if reduce_cond is not None:
|
97 |
+
self.reduce_cond = nn.Linear(512, reduce_cond)
|
98 |
+
for p in self.reduce_cond.parameters():
|
99 |
+
p.requires_grad_(False)
|
100 |
+
else:
|
101 |
+
self.reduce_cond = None
|
102 |
+
|
103 |
+
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
104 |
+
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
105 |
+
|
106 |
+
self.reduce = nn.Linear(768, reduce_dim)
|
107 |
+
|
108 |
+
self.prompt_list = get_prompt_list(prompt)
|
109 |
+
|
110 |
+
# precomputed prompts
|
111 |
+
import pickle
|
112 |
+
if isfile('precomputed_prompt_vectors.pickle'):
|
113 |
+
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
|
114 |
+
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
|
115 |
+
else:
|
116 |
+
self.precomputed_prompts = dict()
|
117 |
+
|
118 |
+
def rescaled_pos_emb(self, new_size):
|
119 |
+
assert len(new_size) == 2
|
120 |
+
|
121 |
+
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
|
122 |
+
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
|
123 |
+
return torch.cat([self.model.positional_embedding[:1], b])
|
124 |
+
|
125 |
+
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
|
126 |
+
|
127 |
+
|
128 |
+
with torch.no_grad():
|
129 |
+
|
130 |
+
inp_size = x_inp.shape[2:]
|
131 |
+
|
132 |
+
if self.n_tokens is not None:
|
133 |
+
stride2 = x_inp.shape[2] // self.n_tokens
|
134 |
+
conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
|
135 |
+
x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
|
136 |
+
else:
|
137 |
+
x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
|
138 |
+
|
139 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
140 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
141 |
+
|
142 |
+
x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
143 |
+
|
144 |
+
standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
|
145 |
+
|
146 |
+
if x.shape[1] != standard_n_tokens:
|
147 |
+
new_shape = int(math.sqrt(x.shape[1]-1))
|
148 |
+
x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
|
149 |
+
else:
|
150 |
+
x = x + self.model.positional_embedding.to(x.dtype)
|
151 |
+
|
152 |
+
x = self.model.ln_pre(x)
|
153 |
+
|
154 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
155 |
+
|
156 |
+
activations, affinities = [], []
|
157 |
+
for i, res_block in enumerate(self.model.transformer.resblocks):
|
158 |
+
|
159 |
+
if mask is not None:
|
160 |
+
mask_layer, mask_type, mask_tensor = mask
|
161 |
+
if mask_layer == i or mask_layer == 'all':
|
162 |
+
# import ipdb; ipdb.set_trace()
|
163 |
+
size = int(math.sqrt(x.shape[0] - 1))
|
164 |
+
|
165 |
+
attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
|
166 |
+
|
167 |
+
else:
|
168 |
+
attn_mask = None
|
169 |
+
else:
|
170 |
+
attn_mask = None
|
171 |
+
|
172 |
+
x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)
|
173 |
+
|
174 |
+
if i in extract_layers:
|
175 |
+
affinities += [aff_per_head]
|
176 |
+
|
177 |
+
#if self.n_tokens is not None:
|
178 |
+
# activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
|
179 |
+
#else:
|
180 |
+
activations += [x]
|
181 |
+
|
182 |
+
if len(extract_layers) > 0 and i == max(extract_layers) and skip:
|
183 |
+
print('early skip')
|
184 |
+
break
|
185 |
+
|
186 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
187 |
+
x = self.model.ln_post(x[:, 0, :])
|
188 |
+
|
189 |
+
if self.model.proj is not None:
|
190 |
+
x = x @ self.model.proj
|
191 |
+
|
192 |
+
return x, activations, affinities
|
193 |
+
|
194 |
+
def sample_prompts(self, words, prompt_list=None):
|
195 |
+
|
196 |
+
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
|
197 |
+
|
198 |
+
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
|
199 |
+
prompts = [prompt_list[i] for i in prompt_indices]
|
200 |
+
return [promt.format(w) for promt, w in zip(prompts, words)]
|
201 |
+
|
202 |
+
def get_cond_vec(self, conditional, batch_size):
|
203 |
+
# compute conditional from a single string
|
204 |
+
if conditional is not None and type(conditional) == str:
|
205 |
+
cond = self.compute_conditional(conditional)
|
206 |
+
cond = cond.repeat(batch_size, 1)
|
207 |
+
|
208 |
+
# compute conditional from string list/tuple
|
209 |
+
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
|
210 |
+
assert len(conditional) == batch_size
|
211 |
+
cond = self.compute_conditional(conditional)
|
212 |
+
|
213 |
+
# use conditional directly
|
214 |
+
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
|
215 |
+
cond = conditional
|
216 |
+
|
217 |
+
# compute conditional from image
|
218 |
+
elif conditional is not None and type(conditional) == torch.Tensor:
|
219 |
+
with torch.no_grad():
|
220 |
+
cond, _, _ = self.visual_forward(conditional)
|
221 |
+
else:
|
222 |
+
raise ValueError('invalid conditional')
|
223 |
+
return cond
|
224 |
+
|
225 |
+
def compute_conditional(self, conditional):
|
226 |
+
import clip
|
227 |
+
|
228 |
+
dev = next(self.parameters()).device
|
229 |
+
|
230 |
+
if type(conditional) in {list, tuple}:
|
231 |
+
text_tokens = clip.tokenize(conditional).to(dev)
|
232 |
+
cond = self.clip_model.encode_text(text_tokens)
|
233 |
+
else:
|
234 |
+
if conditional in self.precomputed_prompts:
|
235 |
+
cond = self.precomputed_prompts[conditional].float().to(dev)
|
236 |
+
else:
|
237 |
+
text_tokens = clip.tokenize([conditional]).to(dev)
|
238 |
+
cond = self.clip_model.encode_text(text_tokens)[0]
|
239 |
+
|
240 |
+
if self.shift_vector is not None:
|
241 |
+
return cond + self.shift_vector
|
242 |
+
else:
|
243 |
+
return cond
|
244 |
+
|
245 |
+
|
246 |
+
def clip_load_untrained(version):
|
247 |
+
assert version == 'ViT-B/16'
|
248 |
+
from clip.model import CLIP
|
249 |
+
from clip.clip import _MODELS, _download
|
250 |
+
model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
|
251 |
+
state_dict = model.state_dict()
|
252 |
+
|
253 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
254 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
255 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
256 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
257 |
+
image_resolution = vision_patch_size * grid_size
|
258 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
259 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
260 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
261 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
262 |
+
transformer_heads = transformer_width // 64
|
263 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
264 |
+
|
265 |
+
return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size,
|
266 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)
|
267 |
+
|
268 |
+
|
269 |
+
class CLIPDensePredT(CLIPDenseBase):
|
270 |
+
|
271 |
+
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
|
272 |
+
extra_blocks=0, reduce_cond=None, fix_shift=False,
|
273 |
+
learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False,
|
274 |
+
add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False):
|
275 |
+
|
276 |
+
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
|
277 |
+
# device = 'cpu'
|
278 |
+
|
279 |
+
self.extract_layers = extract_layers
|
280 |
+
self.cond_layer = cond_layer
|
281 |
+
self.limit_to_clip_only = limit_to_clip_only
|
282 |
+
self.process_cond = None
|
283 |
+
self.rev_activations = rev_activations
|
284 |
+
|
285 |
+
depth = len(extract_layers)
|
286 |
+
|
287 |
+
if add_calibration:
|
288 |
+
self.calibration_conds = 1
|
289 |
+
|
290 |
+
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
|
291 |
+
|
292 |
+
self.add_activation1 = True
|
293 |
+
|
294 |
+
self.version = version
|
295 |
+
|
296 |
+
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
|
297 |
+
|
298 |
+
if fix_shift:
|
299 |
+
# self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
|
300 |
+
self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
|
301 |
+
# self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
|
302 |
+
else:
|
303 |
+
self.shift_vector = None
|
304 |
+
|
305 |
+
if trans_conv is None:
|
306 |
+
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
|
307 |
+
else:
|
308 |
+
# explicitly define transposed conv kernel size
|
309 |
+
trans_conv_ks = (trans_conv, trans_conv)
|
310 |
+
|
311 |
+
if not complex_trans_conv:
|
312 |
+
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
313 |
+
else:
|
314 |
+
assert trans_conv_ks[0] == trans_conv_ks[1]
|
315 |
+
|
316 |
+
tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
|
317 |
+
|
318 |
+
self.trans_conv = nn.Sequential(
|
319 |
+
nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
|
320 |
+
nn.ReLU(),
|
321 |
+
nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]),
|
322 |
+
nn.ReLU(),
|
323 |
+
nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]),
|
324 |
+
)
|
325 |
+
|
326 |
+
# self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
327 |
+
|
328 |
+
assert len(self.extract_layers) == depth
|
329 |
+
|
330 |
+
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
|
331 |
+
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
|
332 |
+
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
|
333 |
+
|
334 |
+
# refinement and trans conv
|
335 |
+
|
336 |
+
if learn_trans_conv_only:
|
337 |
+
for p in self.parameters():
|
338 |
+
p.requires_grad_(False)
|
339 |
+
|
340 |
+
for p in self.trans_conv.parameters():
|
341 |
+
p.requires_grad_(True)
|
342 |
+
|
343 |
+
self.prompt_list = get_prompt_list(prompt)
|
344 |
+
|
345 |
+
|
346 |
+
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
|
347 |
+
|
348 |
+
assert type(return_features) == bool
|
349 |
+
|
350 |
+
inp_image = inp_image.to(self.model.positional_embedding.device)
|
351 |
+
|
352 |
+
if mask is not None:
|
353 |
+
raise ValueError('mask not supported')
|
354 |
+
|
355 |
+
# x_inp = normalize(inp_image)
|
356 |
+
x_inp = inp_image
|
357 |
+
|
358 |
+
bs, dev = inp_image.shape[0], x_inp.device
|
359 |
+
|
360 |
+
cond = self.get_cond_vec(conditional, bs)
|
361 |
+
|
362 |
+
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
|
363 |
+
|
364 |
+
activation1 = activations[0]
|
365 |
+
activations = activations[1:]
|
366 |
+
|
367 |
+
_activations = activations[::-1] if not self.rev_activations else activations
|
368 |
+
|
369 |
+
a = None
|
370 |
+
for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
|
371 |
+
|
372 |
+
if a is not None:
|
373 |
+
a = reduce(activation) + a
|
374 |
+
else:
|
375 |
+
a = reduce(activation)
|
376 |
+
|
377 |
+
if i == self.cond_layer:
|
378 |
+
if self.reduce_cond is not None:
|
379 |
+
cond = self.reduce_cond(cond)
|
380 |
+
|
381 |
+
a = self.film_mul(cond) * a + self.film_add(cond)
|
382 |
+
|
383 |
+
a = block(a)
|
384 |
+
|
385 |
+
for block in self.extra_blocks:
|
386 |
+
a = a + block(a)
|
387 |
+
|
388 |
+
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
389 |
+
|
390 |
+
size = int(math.sqrt(a.shape[2]))
|
391 |
+
|
392 |
+
a = a.view(bs, a.shape[1], size, size)
|
393 |
+
|
394 |
+
a = self.trans_conv(a)
|
395 |
+
|
396 |
+
if self.n_tokens is not None:
|
397 |
+
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True)
|
398 |
+
|
399 |
+
if self.upsample_proj is not None:
|
400 |
+
a = self.upsample_proj(a)
|
401 |
+
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
|
402 |
+
|
403 |
+
if return_features:
|
404 |
+
return a, visual_q, cond, [activation1] + activations
|
405 |
+
else:
|
406 |
+
return a,
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
class CLIPDensePredTMasked(CLIPDensePredT):
|
411 |
+
|
412 |
+
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4,
|
413 |
+
prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False,
|
414 |
+
refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):
|
415 |
+
|
416 |
+
super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim,
|
417 |
+
n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond,
|
418 |
+
fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
|
419 |
+
limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
|
420 |
+
n_tokens=n_tokens)
|
421 |
+
|
422 |
+
def visual_forward_masked(self, img_s, seg_s):
|
423 |
+
return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))
|
424 |
+
|
425 |
+
def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
|
426 |
+
|
427 |
+
if seg_s is None:
|
428 |
+
cond = cond_or_img_s
|
429 |
+
else:
|
430 |
+
img_s = cond_or_img_s
|
431 |
+
|
432 |
+
with torch.no_grad():
|
433 |
+
cond, _, _ = self.visual_forward_masked(img_s, seg_s)
|
434 |
+
|
435 |
+
return super().forward(img_q, cond, return_features=return_features)
|
436 |
+
|
437 |
+
|
438 |
+
|
439 |
+
class CLIPDenseBaseline(CLIPDenseBase):
|
440 |
+
|
441 |
+
def __init__(self, version='ViT-B/32', cond_layer=0,
|
442 |
+
extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed',
|
443 |
+
reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
|
444 |
+
|
445 |
+
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
|
446 |
+
device = 'cpu'
|
447 |
+
|
448 |
+
# self.cond_layer = cond_layer
|
449 |
+
self.extract_layer = extract_layer
|
450 |
+
self.limit_to_clip_only = limit_to_clip_only
|
451 |
+
self.shift_vector = None
|
452 |
+
|
453 |
+
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
|
454 |
+
|
455 |
+
assert reduce2_dim is not None
|
456 |
+
|
457 |
+
self.reduce2 = nn.Sequential(
|
458 |
+
nn.Linear(reduce_dim, reduce2_dim),
|
459 |
+
nn.ReLU(),
|
460 |
+
nn.Linear(reduce2_dim, reduce_dim)
|
461 |
+
)
|
462 |
+
|
463 |
+
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
|
464 |
+
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
465 |
+
|
466 |
+
|
467 |
+
def forward(self, inp_image, conditional=None, return_features=False):
|
468 |
+
|
469 |
+
inp_image = inp_image.to(self.model.positional_embedding.device)
|
470 |
+
|
471 |
+
# x_inp = normalize(inp_image)
|
472 |
+
x_inp = inp_image
|
473 |
+
|
474 |
+
bs, dev = inp_image.shape[0], x_inp.device
|
475 |
+
|
476 |
+
cond = self.get_cond_vec(conditional, bs)
|
477 |
+
|
478 |
+
visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])
|
479 |
+
|
480 |
+
a = activations[0]
|
481 |
+
a = self.reduce(a)
|
482 |
+
a = self.film_mul(cond) * a + self.film_add(cond)
|
483 |
+
|
484 |
+
if self.reduce2 is not None:
|
485 |
+
a = self.reduce2(a)
|
486 |
+
|
487 |
+
# the original model would execute a transformer block here
|
488 |
+
|
489 |
+
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
490 |
+
|
491 |
+
size = int(math.sqrt(a.shape[2]))
|
492 |
+
|
493 |
+
a = a.view(bs, a.shape[1], size, size)
|
494 |
+
a = self.trans_conv(a)
|
495 |
+
|
496 |
+
if return_features:
|
497 |
+
return a, visual_q, cond, activations
|
498 |
+
else:
|
499 |
+
return a,
|
500 |
+
|
501 |
+
|
502 |
+
class CLIPSegMultiLabel(nn.Module):
|
503 |
+
|
504 |
+
def __init__(self, model) -> None:
|
505 |
+
super().__init__()
|
506 |
+
|
507 |
+
from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
|
508 |
+
|
509 |
+
self.pascal_classes = VOC
|
510 |
+
|
511 |
+
from clip.clipseg import CLIPDensePredT
|
512 |
+
from general_utils import load_model
|
513 |
+
# self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
|
514 |
+
self.clipseg = load_model(model, strict=False)
|
515 |
+
|
516 |
+
self.clipseg.eval()
|
517 |
+
|
518 |
+
def forward(self, x):
|
519 |
+
|
520 |
+
bs = x.shape[0]
|
521 |
+
out = torch.ones(21, bs, 352, 352).to(x.device) * -10
|
522 |
+
|
523 |
+
for class_id, class_name in enumerate(self.pascal_classes):
|
524 |
+
|
525 |
+
fac = 3 if class_name == 'background' else 1
|
526 |
+
|
527 |
+
with torch.no_grad():
|
528 |
+
pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac
|
529 |
+
|
530 |
+
out[class_id] += pred
|
531 |
+
|
532 |
+
|
533 |
+
out = out.permute(1, 0, 2, 3)
|
534 |
+
|
535 |
+
return out
|
536 |
+
|
537 |
+
# construct output tensor
|
538 |
+
|
clip/model.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
self.relu1 = nn.ReLU(inplace=True)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
+
self.relu2 = nn.ReLU(inplace=True)
|
24 |
+
|
25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
+
|
27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
+
self.relu3 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
self.downsample = None
|
32 |
+
self.stride = stride
|
33 |
+
|
34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
37 |
+
("-1", nn.AvgPool2d(stride)),
|
38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
+
]))
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor):
|
43 |
+
identity = x
|
44 |
+
|
45 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
46 |
+
out = self.relu2(self.bn2(self.conv2(out)))
|
47 |
+
out = self.avgpool(out)
|
48 |
+
out = self.bn3(self.conv3(out))
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
identity = self.downsample(x)
|
52 |
+
|
53 |
+
out += identity
|
54 |
+
out = self.relu3(out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
|
58 |
+
class AttentionPool2d(nn.Module):
|
59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
+
super().__init__()
|
61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
+
self.num_heads = num_heads
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
+
x, _ = F.multi_head_attention_forward(
|
73 |
+
query=x[:1], key=x, value=x,
|
74 |
+
embed_dim_to_check=x.shape[-1],
|
75 |
+
num_heads=self.num_heads,
|
76 |
+
q_proj_weight=self.q_proj.weight,
|
77 |
+
k_proj_weight=self.k_proj.weight,
|
78 |
+
v_proj_weight=self.v_proj.weight,
|
79 |
+
in_proj_weight=None,
|
80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
+
bias_k=None,
|
82 |
+
bias_v=None,
|
83 |
+
add_zero_attn=False,
|
84 |
+
dropout_p=0,
|
85 |
+
out_proj_weight=self.c_proj.weight,
|
86 |
+
out_proj_bias=self.c_proj.bias,
|
87 |
+
use_separate_proj_weight=True,
|
88 |
+
training=self.training,
|
89 |
+
need_weights=False
|
90 |
+
)
|
91 |
+
return x.squeeze(0)
|
92 |
+
|
93 |
+
|
94 |
+
class ModifiedResNet(nn.Module):
|
95 |
+
"""
|
96 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
97 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
98 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
99 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
103 |
+
super().__init__()
|
104 |
+
self.output_dim = output_dim
|
105 |
+
self.input_resolution = input_resolution
|
106 |
+
|
107 |
+
# the 3-layer stem
|
108 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
109 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
110 |
+
self.relu1 = nn.ReLU(inplace=True)
|
111 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
112 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
113 |
+
self.relu2 = nn.ReLU(inplace=True)
|
114 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
115 |
+
self.bn3 = nn.BatchNorm2d(width)
|
116 |
+
self.relu3 = nn.ReLU(inplace=True)
|
117 |
+
self.avgpool = nn.AvgPool2d(2)
|
118 |
+
|
119 |
+
# residual layers
|
120 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
121 |
+
self.layer1 = self._make_layer(width, layers[0])
|
122 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
123 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
124 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
125 |
+
|
126 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
127 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
128 |
+
|
129 |
+
def _make_layer(self, planes, blocks, stride=1):
|
130 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
131 |
+
|
132 |
+
self._inplanes = planes * Bottleneck.expansion
|
133 |
+
for _ in range(1, blocks):
|
134 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
135 |
+
|
136 |
+
return nn.Sequential(*layers)
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
def stem(x):
|
140 |
+
x = self.relu1(self.bn1(self.conv1(x)))
|
141 |
+
x = self.relu2(self.bn2(self.conv2(x)))
|
142 |
+
x = self.relu3(self.bn3(self.conv3(x)))
|
143 |
+
x = self.avgpool(x)
|
144 |
+
return x
|
145 |
+
|
146 |
+
x = x.type(self.conv1.weight.dtype)
|
147 |
+
x = stem(x)
|
148 |
+
x = self.layer1(x)
|
149 |
+
x = self.layer2(x)
|
150 |
+
x = self.layer3(x)
|
151 |
+
x = self.layer4(x)
|
152 |
+
x = self.attnpool(x)
|
153 |
+
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class LayerNorm(nn.LayerNorm):
|
158 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
159 |
+
|
160 |
+
def forward(self, x: torch.Tensor):
|
161 |
+
orig_type = x.dtype
|
162 |
+
ret = super().forward(x.type(torch.float32))
|
163 |
+
return ret.type(orig_type)
|
164 |
+
|
165 |
+
|
166 |
+
class QuickGELU(nn.Module):
|
167 |
+
def forward(self, x: torch.Tensor):
|
168 |
+
return x * torch.sigmoid(1.702 * x)
|
169 |
+
|
170 |
+
|
171 |
+
class ResidualAttentionBlock(nn.Module):
|
172 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
176 |
+
self.ln_1 = LayerNorm(d_model)
|
177 |
+
self.mlp = nn.Sequential(OrderedDict([
|
178 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
179 |
+
("gelu", QuickGELU()),
|
180 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
181 |
+
]))
|
182 |
+
self.ln_2 = LayerNorm(d_model)
|
183 |
+
self.attn_mask = attn_mask
|
184 |
+
|
185 |
+
def attention(self, x: torch.Tensor):
|
186 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
187 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
188 |
+
|
189 |
+
def forward(self, x: torch.Tensor):
|
190 |
+
x = x + self.attention(self.ln_1(x))
|
191 |
+
x = x + self.mlp(self.ln_2(x))
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class Transformer(nn.Module):
|
196 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
197 |
+
super().__init__()
|
198 |
+
self.width = width
|
199 |
+
self.layers = layers
|
200 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
201 |
+
|
202 |
+
def forward(self, x: torch.Tensor):
|
203 |
+
return self.resblocks(x)
|
204 |
+
|
205 |
+
|
206 |
+
class VisionTransformer(nn.Module):
|
207 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
208 |
+
super().__init__()
|
209 |
+
self.input_resolution = input_resolution
|
210 |
+
self.output_dim = output_dim
|
211 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
212 |
+
|
213 |
+
scale = width ** -0.5
|
214 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
215 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
216 |
+
self.ln_pre = LayerNorm(width)
|
217 |
+
|
218 |
+
self.transformer = Transformer(width, layers, heads)
|
219 |
+
|
220 |
+
self.ln_post = LayerNorm(width)
|
221 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
222 |
+
|
223 |
+
def forward(self, x: torch.Tensor):
|
224 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
225 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
226 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
227 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
228 |
+
x = x + self.positional_embedding.to(x.dtype)
|
229 |
+
x = self.ln_pre(x)
|
230 |
+
|
231 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
232 |
+
x = self.transformer(x)
|
233 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
234 |
+
|
235 |
+
x = self.ln_post(x[:, 0, :])
|
236 |
+
|
237 |
+
if self.proj is not None:
|
238 |
+
x = x @ self.proj
|
239 |
+
|
240 |
+
return x
|
241 |
+
|
242 |
+
|
243 |
+
class CLIP(nn.Module):
|
244 |
+
def __init__(self,
|
245 |
+
embed_dim: int,
|
246 |
+
# vision
|
247 |
+
image_resolution: int,
|
248 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
249 |
+
vision_width: int,
|
250 |
+
vision_patch_size: int,
|
251 |
+
# text
|
252 |
+
context_length: int,
|
253 |
+
vocab_size: int,
|
254 |
+
transformer_width: int,
|
255 |
+
transformer_heads: int,
|
256 |
+
transformer_layers: int
|
257 |
+
):
|
258 |
+
super().__init__()
|
259 |
+
|
260 |
+
self.context_length = context_length
|
261 |
+
|
262 |
+
if isinstance(vision_layers, (tuple, list)):
|
263 |
+
vision_heads = vision_width * 32 // 64
|
264 |
+
self.visual = ModifiedResNet(
|
265 |
+
layers=vision_layers,
|
266 |
+
output_dim=embed_dim,
|
267 |
+
heads=vision_heads,
|
268 |
+
input_resolution=image_resolution,
|
269 |
+
width=vision_width
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
vision_heads = vision_width // 64
|
273 |
+
self.visual = VisionTransformer(
|
274 |
+
input_resolution=image_resolution,
|
275 |
+
patch_size=vision_patch_size,
|
276 |
+
width=vision_width,
|
277 |
+
layers=vision_layers,
|
278 |
+
heads=vision_heads,
|
279 |
+
output_dim=embed_dim
|
280 |
+
)
|
281 |
+
|
282 |
+
self.transformer = Transformer(
|
283 |
+
width=transformer_width,
|
284 |
+
layers=transformer_layers,
|
285 |
+
heads=transformer_heads,
|
286 |
+
attn_mask=self.build_attention_mask()
|
287 |
+
)
|
288 |
+
|
289 |
+
self.vocab_size = vocab_size
|
290 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
291 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
292 |
+
self.ln_final = LayerNorm(transformer_width)
|
293 |
+
|
294 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
295 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
296 |
+
|
297 |
+
self.initialize_parameters()
|
298 |
+
|
299 |
+
def initialize_parameters(self):
|
300 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
301 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
302 |
+
|
303 |
+
if isinstance(self.visual, ModifiedResNet):
|
304 |
+
if self.visual.attnpool is not None:
|
305 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
306 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
307 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
308 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
309 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
310 |
+
|
311 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
312 |
+
for name, param in resnet_block.named_parameters():
|
313 |
+
if name.endswith("bn3.weight"):
|
314 |
+
nn.init.zeros_(param)
|
315 |
+
|
316 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
317 |
+
attn_std = self.transformer.width ** -0.5
|
318 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
319 |
+
for block in self.transformer.resblocks:
|
320 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
321 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
322 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
323 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
324 |
+
|
325 |
+
if self.text_projection is not None:
|
326 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
327 |
+
|
328 |
+
def build_attention_mask(self):
|
329 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
330 |
+
# pytorch uses additive attention mask; fill with -inf
|
331 |
+
mask = torch.empty(self.context_length, self.context_length)
|
332 |
+
mask.fill_(float("-inf"))
|
333 |
+
mask.triu_(1) # zero out the lower diagonal
|
334 |
+
return mask
|
335 |
+
|
336 |
+
@property
|
337 |
+
def dtype(self):
|
338 |
+
return self.visual.conv1.weight.dtype
|
339 |
+
|
340 |
+
def encode_image(self, image):
|
341 |
+
return self.visual(image.type(self.dtype))
|
342 |
+
|
343 |
+
def encode_text(self, text):
|
344 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
345 |
+
|
346 |
+
x = x + self.positional_embedding.type(self.dtype)
|
347 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
348 |
+
x = self.transformer(x)
|
349 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
350 |
+
x = self.ln_final(x).type(self.dtype)
|
351 |
+
|
352 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
353 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
354 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
355 |
+
|
356 |
+
return x
|
357 |
+
|
358 |
+
def forward(self, image, text):
|
359 |
+
image_features = self.encode_image(image)
|
360 |
+
text_features = self.encode_text(text)
|
361 |
+
|
362 |
+
# normalized features
|
363 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
364 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
365 |
+
|
366 |
+
# cosine similarity as logits
|
367 |
+
logit_scale = self.logit_scale.exp()
|
368 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
369 |
+
logits_per_text = logits_per_image.t()
|
370 |
+
|
371 |
+
# shape = [global_batch_size, global_batch_size]
|
372 |
+
return logits_per_image, logits_per_text
|
373 |
+
|
374 |
+
|
375 |
+
def convert_weights(model: nn.Module):
|
376 |
+
"""Convert applicable model parameters to fp16"""
|
377 |
+
|
378 |
+
def _convert_weights_to_fp16(l):
|
379 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
380 |
+
l.weight.data = l.weight.data.half()
|
381 |
+
if l.bias is not None:
|
382 |
+
l.bias.data = l.bias.data.half()
|
383 |
+
|
384 |
+
if isinstance(l, nn.MultiheadAttention):
|
385 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
386 |
+
tensor = getattr(l, attr)
|
387 |
+
if tensor is not None:
|
388 |
+
tensor.data = tensor.data.half()
|
389 |
+
|
390 |
+
for name in ["text_projection", "proj"]:
|
391 |
+
if hasattr(l, name):
|
392 |
+
attr = getattr(l, name)
|
393 |
+
if attr is not None:
|
394 |
+
attr.data = attr.data.half()
|
395 |
+
|
396 |
+
model.apply(_convert_weights_to_fp16)
|
397 |
+
|
398 |
+
|
399 |
+
def build_model(state_dict: dict):
|
400 |
+
vit = "visual.proj" in state_dict
|
401 |
+
|
402 |
+
if vit:
|
403 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
404 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
405 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
406 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
407 |
+
image_resolution = vision_patch_size * grid_size
|
408 |
+
else:
|
409 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
410 |
+
vision_layers = tuple(counts)
|
411 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
412 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
413 |
+
vision_patch_size = None
|
414 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
415 |
+
image_resolution = output_width * 32
|
416 |
+
|
417 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
418 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
419 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
420 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
421 |
+
transformer_heads = transformer_width // 64
|
422 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
|
423 |
+
|
424 |
+
model = CLIP(
|
425 |
+
embed_dim,
|
426 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
427 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
428 |
+
)
|
429 |
+
|
430 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
431 |
+
if key in state_dict:
|
432 |
+
del state_dict[key]
|
433 |
+
|
434 |
+
convert_weights(model)
|
435 |
+
model.load_state_dict(state_dict)
|
436 |
+
return model.eval()
|
clip/simple_tokenizer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
79 |
+
|
80 |
+
def bpe(self, token):
|
81 |
+
if token in self.cache:
|
82 |
+
return self.cache[token]
|
83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
84 |
+
pairs = get_pairs(word)
|
85 |
+
|
86 |
+
if not pairs:
|
87 |
+
return token+'</w>'
|
88 |
+
|
89 |
+
while True:
|
90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
91 |
+
if bigram not in self.bpe_ranks:
|
92 |
+
break
|
93 |
+
first, second = bigram
|
94 |
+
new_word = []
|
95 |
+
i = 0
|
96 |
+
while i < len(word):
|
97 |
+
try:
|
98 |
+
j = word.index(first, i)
|
99 |
+
new_word.extend(word[i:j])
|
100 |
+
i = j
|
101 |
+
except:
|
102 |
+
new_word.extend(word[i:])
|
103 |
+
break
|
104 |
+
|
105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
106 |
+
new_word.append(first+second)
|
107 |
+
i += 2
|
108 |
+
else:
|
109 |
+
new_word.append(word[i])
|
110 |
+
i += 1
|
111 |
+
new_word = tuple(new_word)
|
112 |
+
word = new_word
|
113 |
+
if len(word) == 1:
|
114 |
+
break
|
115 |
+
else:
|
116 |
+
pairs = get_pairs(word)
|
117 |
+
word = ' '.join(word)
|
118 |
+
self.cache[token] = word
|
119 |
+
return word
|
120 |
+
|
121 |
+
def encode(self, text):
|
122 |
+
bpe_tokens = []
|
123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
124 |
+
for token in re.findall(self.pat, text):
|
125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
127 |
+
return bpe_tokens
|
128 |
+
|
129 |
+
def decode(self, tokens):
|
130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
132 |
+
return text
|
clip/vitseg.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from posixpath import basename, dirname, join
|
3 |
+
# import clip
|
4 |
+
from clip.model import convert_weights
|
5 |
+
import torch
|
6 |
+
import json
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as nnf
|
9 |
+
from torch.nn.modules import activation
|
10 |
+
from torch.nn.modules.activation import ReLU
|
11 |
+
from torchvision import transforms
|
12 |
+
|
13 |
+
normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
14 |
+
|
15 |
+
from torchvision.models import ResNet
|
16 |
+
|
17 |
+
|
18 |
+
def process_prompts(conditional, prompt_list, conditional_map):
|
19 |
+
# DEPRECATED
|
20 |
+
|
21 |
+
# randomly sample a synonym
|
22 |
+
words = [conditional_map[int(i)] for i in conditional]
|
23 |
+
words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words]
|
24 |
+
words = [w.replace('_', ' ') for w in words]
|
25 |
+
|
26 |
+
if prompt_list is not None:
|
27 |
+
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
|
28 |
+
prompts = [prompt_list[i] for i in prompt_indices]
|
29 |
+
else:
|
30 |
+
prompts = ['a photo of {}'] * (len(words))
|
31 |
+
|
32 |
+
return [promt.format(w) for promt, w in zip(prompts, words)]
|
33 |
+
|
34 |
+
|
35 |
+
class VITDenseBase(nn.Module):
|
36 |
+
|
37 |
+
def rescaled_pos_emb(self, new_size):
|
38 |
+
assert len(new_size) == 2
|
39 |
+
|
40 |
+
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
|
41 |
+
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
|
42 |
+
return torch.cat([self.model.positional_embedding[:1], b])
|
43 |
+
|
44 |
+
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
|
48 |
+
x_inp = nnf.interpolate(x_inp, (384, 384))
|
49 |
+
|
50 |
+
x = self.model.patch_embed(x_inp)
|
51 |
+
cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
52 |
+
if self.model.dist_token is None:
|
53 |
+
x = torch.cat((cls_token, x), dim=1)
|
54 |
+
else:
|
55 |
+
x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
|
56 |
+
x = self.model.pos_drop(x + self.model.pos_embed)
|
57 |
+
|
58 |
+
activations = []
|
59 |
+
for i, block in enumerate(self.model.blocks):
|
60 |
+
x = block(x)
|
61 |
+
|
62 |
+
if i in extract_layers:
|
63 |
+
# permute to be compatible with CLIP
|
64 |
+
activations += [x.permute(1,0,2)]
|
65 |
+
|
66 |
+
x = self.model.norm(x)
|
67 |
+
x = self.model.head(self.model.pre_logits(x[:, 0]))
|
68 |
+
|
69 |
+
# again for CLIP compatibility
|
70 |
+
# x = x.permute(1, 0, 2)
|
71 |
+
|
72 |
+
return x, activations, None
|
73 |
+
|
74 |
+
def sample_prompts(self, words, prompt_list=None):
|
75 |
+
|
76 |
+
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
|
77 |
+
|
78 |
+
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
|
79 |
+
prompts = [prompt_list[i] for i in prompt_indices]
|
80 |
+
return [promt.format(w) for promt, w in zip(prompts, words)]
|
81 |
+
|
82 |
+
def get_cond_vec(self, conditional, batch_size):
|
83 |
+
# compute conditional from a single string
|
84 |
+
if conditional is not None and type(conditional) == str:
|
85 |
+
cond = self.compute_conditional(conditional)
|
86 |
+
cond = cond.repeat(batch_size, 1)
|
87 |
+
|
88 |
+
# compute conditional from string list/tuple
|
89 |
+
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
|
90 |
+
assert len(conditional) == batch_size
|
91 |
+
cond = self.compute_conditional(conditional)
|
92 |
+
|
93 |
+
# use conditional directly
|
94 |
+
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
|
95 |
+
cond = conditional
|
96 |
+
|
97 |
+
# compute conditional from image
|
98 |
+
elif conditional is not None and type(conditional) == torch.Tensor:
|
99 |
+
with torch.no_grad():
|
100 |
+
cond, _, _ = self.visual_forward(conditional)
|
101 |
+
else:
|
102 |
+
raise ValueError('invalid conditional')
|
103 |
+
return cond
|
104 |
+
|
105 |
+
def compute_conditional(self, conditional):
|
106 |
+
import clip
|
107 |
+
|
108 |
+
dev = next(self.parameters()).device
|
109 |
+
|
110 |
+
if type(conditional) in {list, tuple}:
|
111 |
+
text_tokens = clip.tokenize(conditional).to(dev)
|
112 |
+
cond = self.clip_model.encode_text(text_tokens)
|
113 |
+
else:
|
114 |
+
if conditional in self.precomputed_prompts:
|
115 |
+
cond = self.precomputed_prompts[conditional].float().to(dev)
|
116 |
+
else:
|
117 |
+
text_tokens = clip.tokenize([conditional]).to(dev)
|
118 |
+
cond = self.clip_model.encode_text(text_tokens)[0]
|
119 |
+
|
120 |
+
return cond
|
121 |
+
|
122 |
+
|
123 |
+
class VITDensePredT(VITDenseBase):
|
124 |
+
|
125 |
+
def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
|
126 |
+
depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False,
|
127 |
+
learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False,
|
128 |
+
add_calibration=False, process_cond=None, not_pretrained=False):
|
129 |
+
super().__init__()
|
130 |
+
# device = 'cpu'
|
131 |
+
|
132 |
+
self.extract_layers = extract_layers
|
133 |
+
self.cond_layer = cond_layer
|
134 |
+
self.limit_to_clip_only = limit_to_clip_only
|
135 |
+
self.process_cond = None
|
136 |
+
|
137 |
+
if add_calibration:
|
138 |
+
self.calibration_conds = 1
|
139 |
+
|
140 |
+
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
|
141 |
+
|
142 |
+
self.add_activation1 = True
|
143 |
+
|
144 |
+
import timm
|
145 |
+
self.model = timm.create_model('vit_base_patch16_384', pretrained=True)
|
146 |
+
self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond)
|
147 |
+
|
148 |
+
for p in self.model.parameters():
|
149 |
+
p.requires_grad_(False)
|
150 |
+
|
151 |
+
import clip
|
152 |
+
self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False)
|
153 |
+
# del self.clip_model.visual
|
154 |
+
|
155 |
+
|
156 |
+
self.token_shape = (14, 14)
|
157 |
+
|
158 |
+
# conditional
|
159 |
+
if reduce_cond is not None:
|
160 |
+
self.reduce_cond = nn.Linear(512, reduce_cond)
|
161 |
+
for p in self.reduce_cond.parameters():
|
162 |
+
p.requires_grad_(False)
|
163 |
+
else:
|
164 |
+
self.reduce_cond = None
|
165 |
+
|
166 |
+
# self.film = AVAILABLE_BLOCKS['film'](512, 128)
|
167 |
+
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
168 |
+
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
169 |
+
|
170 |
+
# DEPRECATED
|
171 |
+
# self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))}
|
172 |
+
|
173 |
+
assert len(self.extract_layers) == depth
|
174 |
+
|
175 |
+
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
|
176 |
+
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
|
177 |
+
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
|
178 |
+
|
179 |
+
trans_conv_ks = (16, 16)
|
180 |
+
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
181 |
+
|
182 |
+
# refinement and trans conv
|
183 |
+
|
184 |
+
if learn_trans_conv_only:
|
185 |
+
for p in self.parameters():
|
186 |
+
p.requires_grad_(False)
|
187 |
+
|
188 |
+
for p in self.trans_conv.parameters():
|
189 |
+
p.requires_grad_(True)
|
190 |
+
|
191 |
+
if prompt == 'fixed':
|
192 |
+
self.prompt_list = ['a photo of a {}.']
|
193 |
+
elif prompt == 'shuffle':
|
194 |
+
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
|
195 |
+
elif prompt == 'shuffle+':
|
196 |
+
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
|
197 |
+
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
|
198 |
+
'a bad photo of a {}.', 'a photo of the {}.']
|
199 |
+
elif prompt == 'shuffle_clip':
|
200 |
+
from models.clip_prompts import imagenet_templates
|
201 |
+
self.prompt_list = imagenet_templates
|
202 |
+
|
203 |
+
if process_cond is not None:
|
204 |
+
if process_cond == 'clamp' or process_cond[0] == 'clamp':
|
205 |
+
|
206 |
+
val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2
|
207 |
+
|
208 |
+
def clamp_vec(x):
|
209 |
+
return torch.clamp(x, -val, val)
|
210 |
+
|
211 |
+
self.process_cond = clamp_vec
|
212 |
+
|
213 |
+
elif process_cond.endswith('.pth'):
|
214 |
+
|
215 |
+
shift = torch.load(process_cond)
|
216 |
+
def add_shift(x):
|
217 |
+
return x + shift.to(x.device)
|
218 |
+
|
219 |
+
self.process_cond = add_shift
|
220 |
+
|
221 |
+
import pickle
|
222 |
+
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
|
223 |
+
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
|
224 |
+
|
225 |
+
|
226 |
+
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
|
227 |
+
|
228 |
+
assert type(return_features) == bool
|
229 |
+
|
230 |
+
# inp_image = inp_image.to(self.model.positional_embedding.device)
|
231 |
+
|
232 |
+
if mask is not None:
|
233 |
+
raise ValueError('mask not supported')
|
234 |
+
|
235 |
+
# x_inp = normalize(inp_image)
|
236 |
+
x_inp = inp_image
|
237 |
+
|
238 |
+
bs, dev = inp_image.shape[0], x_inp.device
|
239 |
+
|
240 |
+
inp_image_size = inp_image.shape[2:]
|
241 |
+
|
242 |
+
cond = self.get_cond_vec(conditional, bs)
|
243 |
+
|
244 |
+
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
|
245 |
+
|
246 |
+
activation1 = activations[0]
|
247 |
+
activations = activations[1:]
|
248 |
+
|
249 |
+
a = None
|
250 |
+
for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)):
|
251 |
+
|
252 |
+
if a is not None:
|
253 |
+
a = reduce(activation) + a
|
254 |
+
else:
|
255 |
+
a = reduce(activation)
|
256 |
+
|
257 |
+
if i == self.cond_layer:
|
258 |
+
if self.reduce_cond is not None:
|
259 |
+
cond = self.reduce_cond(cond)
|
260 |
+
|
261 |
+
a = self.film_mul(cond) * a + self.film_add(cond)
|
262 |
+
|
263 |
+
a = block(a)
|
264 |
+
|
265 |
+
for block in self.extra_blocks:
|
266 |
+
a = a + block(a)
|
267 |
+
|
268 |
+
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
269 |
+
|
270 |
+
size = int(math.sqrt(a.shape[2]))
|
271 |
+
|
272 |
+
a = a.view(bs, a.shape[1], size, size)
|
273 |
+
|
274 |
+
if self.trans_conv is not None:
|
275 |
+
a = self.trans_conv(a)
|
276 |
+
|
277 |
+
if self.upsample_proj is not None:
|
278 |
+
a = self.upsample_proj(a)
|
279 |
+
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
|
280 |
+
|
281 |
+
a = nnf.interpolate(a, inp_image_size)
|
282 |
+
|
283 |
+
if return_features:
|
284 |
+
return a, visual_q, cond, [activation1] + activations
|
285 |
+
else:
|
286 |
+
return a,
|
config_colab.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
clear_output: true
|
2 |
+
force_cpu: false
|
3 |
+
max_threads: 3
|
4 |
+
memory_limit: 0
|
5 |
+
output_image_format: png
|
6 |
+
output_template: '{file}_{time}'
|
7 |
+
output_video_codec: libx264
|
8 |
+
output_video_format: mp4
|
9 |
+
provider: cuda
|
10 |
+
selected_theme: Default
|
11 |
+
server_name: ''
|
12 |
+
server_port: 0
|
13 |
+
server_share: true
|
14 |
+
video_quality: 14
|
docs/screenshot.png
ADDED
Git LFS Details
|
installer/installer.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import site
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
|
9 |
+
|
10 |
+
script_dir = os.getcwd()
|
11 |
+
|
12 |
+
|
13 |
+
def run_cmd(cmd, capture_output=False, env=None):
|
14 |
+
# Run shell commands
|
15 |
+
return subprocess.run(cmd, shell=True, capture_output=capture_output, env=env)
|
16 |
+
|
17 |
+
|
18 |
+
def check_env():
|
19 |
+
# If we have access to conda, we are probably in an environment
|
20 |
+
conda_not_exist = run_cmd("conda", capture_output=True).returncode
|
21 |
+
if conda_not_exist:
|
22 |
+
print("Conda is not installed. Exiting...")
|
23 |
+
sys.exit()
|
24 |
+
|
25 |
+
# Ensure this is a new environment and not the base environment
|
26 |
+
if os.environ["CONDA_DEFAULT_ENV"] == "base":
|
27 |
+
print("Create an environment for this project and activate it. Exiting...")
|
28 |
+
sys.exit()
|
29 |
+
|
30 |
+
|
31 |
+
def install_dependencies():
|
32 |
+
global MY_PATH
|
33 |
+
|
34 |
+
# Install Git and clone repo
|
35 |
+
run_cmd("conda install -y -k git")
|
36 |
+
run_cmd("git clone https://github.com/C0untFloyd/roop-unleashed.git")
|
37 |
+
os.chdir(MY_PATH)
|
38 |
+
run_cmd("git checkout 5bfafdc97a0c47b46ec83e6530a57399aaad75d7")
|
39 |
+
# Installs dependencies from requirements.txt
|
40 |
+
run_cmd("python -m pip install -r requirements.txt")
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def update_dependencies():
|
45 |
+
global MY_PATH
|
46 |
+
|
47 |
+
os.chdir(MY_PATH)
|
48 |
+
# do a hard reset for to update even if there are local changes
|
49 |
+
run_cmd("git fetch --all")
|
50 |
+
run_cmd("git reset --hard origin/main")
|
51 |
+
run_cmd("git pull")
|
52 |
+
# Installs/Updates dependencies from all requirements.txt
|
53 |
+
run_cmd("python -m pip install -r requirements.txt")
|
54 |
+
|
55 |
+
|
56 |
+
def start_app():
|
57 |
+
global MY_PATH
|
58 |
+
|
59 |
+
os.chdir(MY_PATH)
|
60 |
+
# forward commandline arguments
|
61 |
+
sys.argv.pop(0)
|
62 |
+
args = ' '.join(sys.argv)
|
63 |
+
print("Launching App")
|
64 |
+
run_cmd(f'python run.py {args}')
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
global MY_PATH
|
69 |
+
|
70 |
+
MY_PATH = "roop-unleashed"
|
71 |
+
|
72 |
+
|
73 |
+
# Verifies we are in a conda environment
|
74 |
+
check_env()
|
75 |
+
|
76 |
+
# If webui has already been installed, skip and run
|
77 |
+
if not os.path.exists(MY_PATH):
|
78 |
+
install_dependencies()
|
79 |
+
else:
|
80 |
+
# moved update from batch to here, because of batch limitations
|
81 |
+
updatechoice = input("Check for Updates? [y/n]").lower()
|
82 |
+
if updatechoice == "y":
|
83 |
+
update_dependencies()
|
84 |
+
|
85 |
+
# Run the model with webui
|
86 |
+
os.chdir(script_dir)
|
87 |
+
start_app()
|
installer/macOSinstaller.sh
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# This script checks and installs all dependencies which are needed to run roop-unleashed. After that, it clones the repo.
|
4 |
+
# Execute this easily with /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/PJF16/roop-unleashed/master/installer/macOSinstaller.sh)
|
5 |
+
|
6 |
+
# Function to check if a command exists
|
7 |
+
command_exists() {
|
8 |
+
command -v "$1" >/dev/null 2>&1
|
9 |
+
}
|
10 |
+
|
11 |
+
echo "Starting check and installation process of dependencies for roop-unleashed"
|
12 |
+
|
13 |
+
# Check if Homebrew is installed
|
14 |
+
if ! command_exists brew; then
|
15 |
+
echo "Homebrew is not installed. Starting installation..."
|
16 |
+
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
|
17 |
+
else
|
18 |
+
echo "Homebrew is already installed."
|
19 |
+
fi
|
20 |
+
|
21 |
+
# Update Homebrew
|
22 |
+
echo "Updating Homebrew..."
|
23 |
+
brew update
|
24 |
+
|
25 |
+
# Check if Python 3.11 is installed
|
26 |
+
if brew list --versions [email protected] >/dev/null; then
|
27 |
+
echo "Python 3.11 is already installed."
|
28 |
+
else
|
29 |
+
echo "Python 3.11 is not installed. Installing it now..."
|
30 |
+
brew install [email protected]
|
31 |
+
fi
|
32 |
+
|
33 |
+
# Check if [email protected] is installed
|
34 |
+
if brew list --versions [email protected] >/dev/null; then
|
35 |
+
echo "[email protected] is already installed."
|
36 |
+
else
|
37 |
+
echo "[email protected] is not installed. Installing it now..."
|
38 |
+
brew install [email protected]
|
39 |
+
fi
|
40 |
+
|
41 |
+
# Check if ffmpeg is installed
|
42 |
+
if command_exists ffmpeg; then
|
43 |
+
echo "ffmpeg is already installed."
|
44 |
+
else
|
45 |
+
echo "ffmpeg is not installed. Installing it now..."
|
46 |
+
brew install ffmpeg
|
47 |
+
fi
|
48 |
+
|
49 |
+
# Check if git is installed
|
50 |
+
if command_exists git; then
|
51 |
+
echo "git is already installed."
|
52 |
+
else
|
53 |
+
echo "git is not installed. Installing it now..."
|
54 |
+
brew install git
|
55 |
+
fi
|
56 |
+
|
57 |
+
# Clone the repository
|
58 |
+
REPO_URL="https://github.com/C0untFloyd/roop-unleashed.git"
|
59 |
+
REPO_NAME="roop-unleashed"
|
60 |
+
|
61 |
+
echo "Cloning the repository $REPO_URL..."
|
62 |
+
git clone $REPO_URL
|
63 |
+
|
64 |
+
# Check if the repository was cloned successfully
|
65 |
+
if [ -d "$REPO_NAME" ]; then
|
66 |
+
echo "Repository cloned successfully. Changing into directory $REPO_NAME..."
|
67 |
+
cd "$REPO_NAME"
|
68 |
+
else
|
69 |
+
echo "Failed to clone the repository."
|
70 |
+
fi
|
71 |
+
|
72 |
+
echo "Check and installation process completed."
|
73 |
+
|
installer/windows_run.bat
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
|
3 |
+
REM No CLI arguments supported anymore
|
4 |
+
set COMMANDLINE_ARGS=
|
5 |
+
|
6 |
+
cd /D "%~dp0"
|
7 |
+
|
8 |
+
echo "%CD%"| findstr /C:" " >nul && echo This script relies on Miniconda which can not be silently installed under a path with spaces. && goto end
|
9 |
+
|
10 |
+
set PATH=%PATH%;%SystemRoot%\system32
|
11 |
+
|
12 |
+
@rem config
|
13 |
+
set INSTALL_DIR=%cd%\installer_files
|
14 |
+
set CONDA_ROOT_PREFIX=%cd%\installer_files\conda
|
15 |
+
set INSTALL_ENV_DIR=%cd%\installer_files\env
|
16 |
+
set MINICONDA_DOWNLOAD_URL=https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
|
17 |
+
set FFMPEG_DOWNLOAD_URL=https://github.com/GyanD/codexffmpeg/releases/download/7.1/ffmpeg-7.1-essentials_build.zip
|
18 |
+
set INSTALL_FFMPEG_DIR=%cd%\installer_files\ffmpeg
|
19 |
+
set INSIGHTFACE_PACKAGE_URL=https://github.com/C0untFloyd/roop-unleashed/releases/download/3.6.6/insightface-0.7.3-cp310-cp310-win_amd64.whl
|
20 |
+
set INSIGHTFACE_PACKAGE_PATH=%INSTALL_DIR%\insightface-0.7.3-cp310-cp310-win_amd64.whl
|
21 |
+
|
22 |
+
set conda_exists=F
|
23 |
+
set ffmpeg_exists=F
|
24 |
+
|
25 |
+
@rem figure out whether git and conda needs to be installed
|
26 |
+
call "%CONDA_ROOT_PREFIX%\_conda.exe" --version >nul 2>&1
|
27 |
+
if "%ERRORLEVEL%" EQU "0" set conda_exists=T
|
28 |
+
|
29 |
+
@rem Check if FFmpeg is already in PATH
|
30 |
+
where ffmpeg >nul 2>&1
|
31 |
+
if "%ERRORLEVEL%" EQU "0" (
|
32 |
+
echo FFmpeg is already installed.
|
33 |
+
set ffmpeg_exists=T
|
34 |
+
)
|
35 |
+
|
36 |
+
@rem (if necessary) install git and conda into a contained environment
|
37 |
+
|
38 |
+
@rem download conda
|
39 |
+
if "%conda_exists%" == "F" (
|
40 |
+
echo Downloading Miniconda from %MINICONDA_DOWNLOAD_URL% to %INSTALL_DIR%\miniconda_installer.exe
|
41 |
+
mkdir "%INSTALL_DIR%"
|
42 |
+
call curl -Lk "%MINICONDA_DOWNLOAD_URL%" > "%INSTALL_DIR%\miniconda_installer.exe" || ( echo. && echo Miniconda failed to download. && goto end )
|
43 |
+
echo Installing Miniconda to %CONDA_ROOT_PREFIX%
|
44 |
+
start /wait "" "%INSTALL_DIR%\miniconda_installer.exe" /InstallationType=JustMe /NoShortcuts=1 /AddToPath=0 /RegisterPython=0 /NoRegistry=1 /S /D=%CONDA_ROOT_PREFIX%
|
45 |
+
|
46 |
+
@rem test the conda binary
|
47 |
+
echo Miniconda version:
|
48 |
+
call "%CONDA_ROOT_PREFIX%\_conda.exe" --version || ( echo. && echo Miniconda not found. && goto end )
|
49 |
+
)
|
50 |
+
|
51 |
+
@rem create the installer env
|
52 |
+
if not exist "%INSTALL_ENV_DIR%" (
|
53 |
+
echo Creating Conda Environment
|
54 |
+
call "%CONDA_ROOT_PREFIX%\_conda.exe" create --no-shortcuts -y -k --prefix "%INSTALL_ENV_DIR%" python=3.10 || ( echo. && echo ERROR: Conda environment creation failed. && goto end )
|
55 |
+
@rem check if conda environment was actually created
|
56 |
+
if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end )
|
57 |
+
@rem activate installer env
|
58 |
+
call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo ERROR: Miniconda hook not found. && goto end )
|
59 |
+
@rem Download insightface package
|
60 |
+
echo Downloading insightface package from %INSIGHTFACE_PACKAGE_URL% to %INSIGHTFACE_PACKAGE_PATH%
|
61 |
+
call curl -Lk "%INSIGHTFACE_PACKAGE_URL%" > "%INSIGHTFACE_PACKAGE_PATH%" || ( echo. && echo ERROR: Insightface package failed to download. && goto end )
|
62 |
+
@rem install insightface package using pip
|
63 |
+
echo Installing insightface package
|
64 |
+
call pip install "%INSIGHTFACE_PACKAGE_PATH%" || ( echo. && echo ERROR: Insightface package installation failed. && goto end )
|
65 |
+
)
|
66 |
+
|
67 |
+
@rem Download and install FFmpeg if not already installed
|
68 |
+
if "%ffmpeg_exists%" == "F" (
|
69 |
+
if not exist "%INSTALL_FFMPEG_DIR%" (
|
70 |
+
echo Downloading ffmpeg from %FFMPEG_DOWNLOAD_URL% to %INSTALL_DIR%
|
71 |
+
call curl -Lk "%FFMPEG_DOWNLOAD_URL%" > "%INSTALL_DIR%\ffmpeg.zip" || ( echo. && echo ffmpeg failed to download. && goto end )
|
72 |
+
call powershell -command "Expand-Archive -Force '%INSTALL_DIR%\ffmpeg.zip' '%INSTALL_DIR%\'"
|
73 |
+
cd "%INSTALL_DIR%"
|
74 |
+
move ffmpeg-* ffmpeg
|
75 |
+
setx PATH "%INSTALL_FFMPEG_DIR%\bin\;%PATH%"
|
76 |
+
echo To use videos, you need to restart roop after this installation.
|
77 |
+
cd ..
|
78 |
+
)
|
79 |
+
) else (
|
80 |
+
echo Skipping FFmpeg installation as it is already available.
|
81 |
+
)
|
82 |
+
|
83 |
+
@rem setup installer env
|
84 |
+
@rem check if conda environment was actually created
|
85 |
+
if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end )
|
86 |
+
@rem activate installer env
|
87 |
+
call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo ERROR: Miniconda hook not found. && goto end )
|
88 |
+
echo Launching roop unleashed
|
89 |
+
call python installer.py %COMMANDLINE_ARGS%
|
90 |
+
|
91 |
+
echo.
|
92 |
+
echo Done!
|
93 |
+
|
94 |
+
:end
|
95 |
+
pause
|
mypy.ini
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[mypy]
|
2 |
+
check_untyped_defs = True
|
3 |
+
disallow_any_generics = True
|
4 |
+
disallow_untyped_calls = True
|
5 |
+
disallow_untyped_defs = True
|
6 |
+
ignore_missing_imports = True
|
7 |
+
strict_optional = False
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.26.4
|
2 |
+
gradio==4.44.0
|
3 |
+
fastapi<0.113.0
|
4 |
+
opencv-python-headless==4.9.0.80
|
5 |
+
onnx==1.16.0
|
6 |
+
insightface==0.7.3
|
7 |
+
albucore==0.0.16
|
8 |
+
psutil==5.9.6
|
9 |
+
torch==2.1.2
|
10 |
+
torchvision==0.16.2
|
11 |
+
onnxruntime==1.17.1
|
12 |
+
tqdm==4.66.4
|
13 |
+
ftfy
|
14 |
+
regex
|
15 |
+
pyvirtualcam
|
roop-unleashed-main/.flake8
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[flake8]
|
2 |
+
select = E3, E4, F
|
3 |
+
per-file-ignores = roop/core.py:E402
|
roop-unleashed-main/.github/ISSUE_TEMPLATE/bug_report.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: Bug report
|
3 |
+
about: Create a report to help us improve
|
4 |
+
title: ''
|
5 |
+
labels: ''
|
6 |
+
assignees: ''
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
**Describe the bug**
|
11 |
+
A clear and concise description of what the bug is.
|
12 |
+
|
13 |
+
**To Reproduce**
|
14 |
+
Steps to reproduce the behavior:
|
15 |
+
1. Go to '...'
|
16 |
+
2. Click on '....'
|
17 |
+
3. Scroll down to '....'
|
18 |
+
4. See error
|
19 |
+
|
20 |
+
**Details**
|
21 |
+
What OS are you using?
|
22 |
+
- [ ] Linux
|
23 |
+
- [ ] Linux in WSL
|
24 |
+
- [ ] Windows
|
25 |
+
- [ ] Mac
|
26 |
+
|
27 |
+
Are you using a GPU?
|
28 |
+
- [ ] No. CPU FTW
|
29 |
+
- [ ] NVIDIA
|
30 |
+
- [ ] AMD
|
31 |
+
- [ ] Intel
|
32 |
+
- [ ] Mac
|
33 |
+
|
34 |
+
**Which version of roop unleashed are you using?**
|
35 |
+
|
36 |
+
**Screenshots**
|
37 |
+
If applicable, add screenshots to help explain your problem.
|
roop-unleashed-main/.github/workflows/stale.yml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This workflow warns and then closes issues and PRs that have had no activity for a specified amount of time.
|
2 |
+
#
|
3 |
+
# You can adjust the behavior by modifying this file.
|
4 |
+
# For more information, see:
|
5 |
+
# https://github.com/actions/stale
|
6 |
+
name: Mark stale issues and pull requests
|
7 |
+
|
8 |
+
on:
|
9 |
+
schedule:
|
10 |
+
- cron: '32 0 * * *'
|
11 |
+
|
12 |
+
jobs:
|
13 |
+
stale:
|
14 |
+
|
15 |
+
runs-on: ubuntu-latest
|
16 |
+
permissions:
|
17 |
+
issues: write
|
18 |
+
pull-requests: write
|
19 |
+
|
20 |
+
steps:
|
21 |
+
- uses: actions/stale@v5
|
22 |
+
with:
|
23 |
+
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
24 |
+
stale-issue-message: 'This issue is stale because it has been open 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
|
25 |
+
stale-pr-message: 'This PR is stale because it has been open 45 days with no activity. Remove stale label or comment or this will be closed in 10 days.'
|
26 |
+
close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.'
|
27 |
+
days-before-stale: 30
|
28 |
+
days-before-close: 5
|
29 |
+
days-before-pr-close: -1
|
roop-unleashed-main/.gitignore
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vs
|
2 |
+
.idea
|
3 |
+
models
|
4 |
+
temp
|
5 |
+
__pycache__
|
6 |
+
*.pth
|
7 |
+
/start.bat
|
8 |
+
/env
|
9 |
+
.vscode
|
10 |
+
output
|
11 |
+
temp
|
12 |
+
config.yaml
|
13 |
+
run.bat
|
14 |
+
venv
|
15 |
+
start.sh
|
roop-unleashed-main/Dockerfile
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11
|
2 |
+
|
3 |
+
# making app folder
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# copying files
|
7 |
+
COPY . .
|
8 |
+
|
9 |
+
# installing requirements
|
10 |
+
RUN apt-get update
|
11 |
+
RUN apt-get install ffmpeg -y
|
12 |
+
RUN pip install --upgrade pip
|
13 |
+
RUN pip install -r ./requirements.txt
|
14 |
+
|
15 |
+
# launching gradio app
|
16 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
17 |
+
EXPOSE 7860
|
18 |
+
ENTRYPOINT python ./run.py
|
roop-unleashed-main/LICENSE
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 19 November 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU Affero General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works, specifically designed to ensure
|
12 |
+
cooperation with the community in the case of network server software.
|
13 |
+
|
14 |
+
The licenses for most software and other practical works are designed
|
15 |
+
to take away your freedom to share and change the works. By contrast,
|
16 |
+
our General Public Licenses are intended to guarantee your freedom to
|
17 |
+
share and change all versions of a program--to make sure it remains free
|
18 |
+
software for all its users.
|
19 |
+
|
20 |
+
When we speak of free software, we are referring to freedom, not
|
21 |
+
price. Our General Public Licenses are designed to make sure that you
|
22 |
+
have the freedom to distribute copies of free software (and charge for
|
23 |
+
them if you wish), that you receive source code or can get it if you
|
24 |
+
want it, that you can change the software or use pieces of it in new
|
25 |
+
free programs, and that you know you can do these things.
|
26 |
+
|
27 |
+
Developers that use our General Public Licenses protect your rights
|
28 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
29 |
+
you this License which gives you legal permission to copy, distribute
|
30 |
+
and/or modify the software.
|
31 |
+
|
32 |
+
A secondary benefit of defending all users' freedom is that
|
33 |
+
improvements made in alternate versions of the program, if they
|
34 |
+
receive widespread use, become available for other developers to
|
35 |
+
incorporate. Many developers of free software are heartened and
|
36 |
+
encouraged by the resulting cooperation. However, in the case of
|
37 |
+
software used on network servers, this result may fail to come about.
|
38 |
+
The GNU General Public License permits making a modified version and
|
39 |
+
letting the public access it on a server without ever releasing its
|
40 |
+
source code to the public.
|
41 |
+
|
42 |
+
The GNU Affero General Public License is designed specifically to
|
43 |
+
ensure that, in such cases, the modified source code becomes available
|
44 |
+
to the community. It requires the operator of a network server to
|
45 |
+
provide the source code of the modified version running there to the
|
46 |
+
users of that server. Therefore, public use of a modified version, on
|
47 |
+
a publicly accessible server, gives the public access to the source
|
48 |
+
code of the modified version.
|
49 |
+
|
50 |
+
An older license, called the Affero General Public License and
|
51 |
+
published by Affero, was designed to accomplish similar goals. This is
|
52 |
+
a different license, not a version of the Affero GPL, but Affero has
|
53 |
+
released a new version of the Affero GPL which permits relicensing under
|
54 |
+
this license.
|
55 |
+
|
56 |
+
The precise terms and conditions for copying, distribution and
|
57 |
+
modification follow.
|
58 |
+
|
59 |
+
TERMS AND CONDITIONS
|
60 |
+
|
61 |
+
0. Definitions.
|
62 |
+
|
63 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
64 |
+
|
65 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
66 |
+
works, such as semiconductor masks.
|
67 |
+
|
68 |
+
"The Program" refers to any copyrightable work licensed under this
|
69 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
70 |
+
"recipients" may be individuals or organizations.
|
71 |
+
|
72 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
73 |
+
in a fashion requiring copyright permission, other than the making of an
|
74 |
+
exact copy. The resulting work is called a "modified version" of the
|
75 |
+
earlier work or a work "based on" the earlier work.
|
76 |
+
|
77 |
+
A "covered work" means either the unmodified Program or a work based
|
78 |
+
on the Program.
|
79 |
+
|
80 |
+
To "propagate" a work means to do anything with it that, without
|
81 |
+
permission, would make you directly or secondarily liable for
|
82 |
+
infringement under applicable copyright law, except executing it on a
|
83 |
+
computer or modifying a private copy. Propagation includes copying,
|
84 |
+
distribution (with or without modification), making available to the
|
85 |
+
public, and in some countries other activities as well.
|
86 |
+
|
87 |
+
To "convey" a work means any kind of propagation that enables other
|
88 |
+
parties to make or receive copies. Mere interaction with a user through
|
89 |
+
a computer network, with no transfer of a copy, is not conveying.
|
90 |
+
|
91 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
92 |
+
to the extent that it includes a convenient and prominently visible
|
93 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
94 |
+
tells the user that there is no warranty for the work (except to the
|
95 |
+
extent that warranties are provided), that licensees may convey the
|
96 |
+
work under this License, and how to view a copy of this License. If
|
97 |
+
the interface presents a list of user commands or options, such as a
|
98 |
+
menu, a prominent item in the list meets this criterion.
|
99 |
+
|
100 |
+
1. Source Code.
|
101 |
+
|
102 |
+
The "source code" for a work means the preferred form of the work
|
103 |
+
for making modifications to it. "Object code" means any non-source
|
104 |
+
form of a work.
|
105 |
+
|
106 |
+
A "Standard Interface" means an interface that either is an official
|
107 |
+
standard defined by a recognized standards body, or, in the case of
|
108 |
+
interfaces specified for a particular programming language, one that
|
109 |
+
is widely used among developers working in that language.
|
110 |
+
|
111 |
+
The "System Libraries" of an executable work include anything, other
|
112 |
+
than the work as a whole, that (a) is included in the normal form of
|
113 |
+
packaging a Major Component, but which is not part of that Major
|
114 |
+
Component, and (b) serves only to enable use of the work with that
|
115 |
+
Major Component, or to implement a Standard Interface for which an
|
116 |
+
implementation is available to the public in source code form. A
|
117 |
+
"Major Component", in this context, means a major essential component
|
118 |
+
(kernel, window system, and so on) of the specific operating system
|
119 |
+
(if any) on which the executable work runs, or a compiler used to
|
120 |
+
produce the work, or an object code interpreter used to run it.
|
121 |
+
|
122 |
+
The "Corresponding Source" for a work in object code form means all
|
123 |
+
the source code needed to generate, install, and (for an executable
|
124 |
+
work) run the object code and to modify the work, including scripts to
|
125 |
+
control those activities. However, it does not include the work's
|
126 |
+
System Libraries, or general-purpose tools or generally available free
|
127 |
+
programs which are used unmodified in performing those activities but
|
128 |
+
which are not part of the work. For example, Corresponding Source
|
129 |
+
includes interface definition files associated with source files for
|
130 |
+
the work, and the source code for shared libraries and dynamically
|
131 |
+
linked subprograms that the work is specifically designed to require,
|
132 |
+
such as by intimate data communication or control flow between those
|
133 |
+
subprograms and other parts of the work.
|
134 |
+
|
135 |
+
The Corresponding Source need not include anything that users
|
136 |
+
can regenerate automatically from other parts of the Corresponding
|
137 |
+
Source.
|
138 |
+
|
139 |
+
The Corresponding Source for a work in source code form is that
|
140 |
+
same work.
|
141 |
+
|
142 |
+
2. Basic Permissions.
|
143 |
+
|
144 |
+
All rights granted under this License are granted for the term of
|
145 |
+
copyright on the Program, and are irrevocable provided the stated
|
146 |
+
conditions are met. This License explicitly affirms your unlimited
|
147 |
+
permission to run the unmodified Program. The output from running a
|
148 |
+
covered work is covered by this License only if the output, given its
|
149 |
+
content, constitutes a covered work. This License acknowledges your
|
150 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
151 |
+
|
152 |
+
You may make, run and propagate covered works that you do not
|
153 |
+
convey, without conditions so long as your license otherwise remains
|
154 |
+
in force. You may convey covered works to others for the sole purpose
|
155 |
+
of having them make modifications exclusively for you, or provide you
|
156 |
+
with facilities for running those works, provided that you comply with
|
157 |
+
the terms of this License in conveying all material for which you do
|
158 |
+
not control copyright. Those thus making or running the covered works
|
159 |
+
for you must do so exclusively on your behalf, under your direction
|
160 |
+
and control, on terms that prohibit them from making any copies of
|
161 |
+
your copyrighted material outside their relationship with you.
|
162 |
+
|
163 |
+
Conveying under any other circumstances is permitted solely under
|
164 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
165 |
+
makes it unnecessary.
|
166 |
+
|
167 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
168 |
+
|
169 |
+
No covered work shall be deemed part of an effective technological
|
170 |
+
measure under any applicable law fulfilling obligations under article
|
171 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
172 |
+
similar laws prohibiting or restricting circumvention of such
|
173 |
+
measures.
|
174 |
+
|
175 |
+
When you convey a covered work, you waive any legal power to forbid
|
176 |
+
circumvention of technological measures to the extent such circumvention
|
177 |
+
is effected by exercising rights under this License with respect to
|
178 |
+
the covered work, and you disclaim any intention to limit operation or
|
179 |
+
modification of the work as a means of enforcing, against the work's
|
180 |
+
users, your or third parties' legal rights to forbid circumvention of
|
181 |
+
technological measures.
|
182 |
+
|
183 |
+
4. Conveying Verbatim Copies.
|
184 |
+
|
185 |
+
You may convey verbatim copies of the Program's source code as you
|
186 |
+
receive it, in any medium, provided that you conspicuously and
|
187 |
+
appropriately publish on each copy an appropriate copyright notice;
|
188 |
+
keep intact all notices stating that this License and any
|
189 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
190 |
+
keep intact all notices of the absence of any warranty; and give all
|
191 |
+
recipients a copy of this License along with the Program.
|
192 |
+
|
193 |
+
You may charge any price or no price for each copy that you convey,
|
194 |
+
and you may offer support or warranty protection for a fee.
|
195 |
+
|
196 |
+
5. Conveying Modified Source Versions.
|
197 |
+
|
198 |
+
You may convey a work based on the Program, or the modifications to
|
199 |
+
produce it from the Program, in the form of source code under the
|
200 |
+
terms of section 4, provided that you also meet all of these conditions:
|
201 |
+
|
202 |
+
a) The work must carry prominent notices stating that you modified
|
203 |
+
it, and giving a relevant date.
|
204 |
+
|
205 |
+
b) The work must carry prominent notices stating that it is
|
206 |
+
released under this License and any conditions added under section
|
207 |
+
7. This requirement modifies the requirement in section 4 to
|
208 |
+
"keep intact all notices".
|
209 |
+
|
210 |
+
c) You must license the entire work, as a whole, under this
|
211 |
+
License to anyone who comes into possession of a copy. This
|
212 |
+
License will therefore apply, along with any applicable section 7
|
213 |
+
additional terms, to the whole of the work, and all its parts,
|
214 |
+
regardless of how they are packaged. This License gives no
|
215 |
+
permission to license the work in any other way, but it does not
|
216 |
+
invalidate such permission if you have separately received it.
|
217 |
+
|
218 |
+
d) If the work has interactive user interfaces, each must display
|
219 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
220 |
+
interfaces that do not display Appropriate Legal Notices, your
|
221 |
+
work need not make them do so.
|
222 |
+
|
223 |
+
A compilation of a covered work with other separate and independent
|
224 |
+
works, which are not by their nature extensions of the covered work,
|
225 |
+
and which are not combined with it such as to form a larger program,
|
226 |
+
in or on a volume of a storage or distribution medium, is called an
|
227 |
+
"aggregate" if the compilation and its resulting copyright are not
|
228 |
+
used to limit the access or legal rights of the compilation's users
|
229 |
+
beyond what the individual works permit. Inclusion of a covered work
|
230 |
+
in an aggregate does not cause this License to apply to the other
|
231 |
+
parts of the aggregate.
|
232 |
+
|
233 |
+
6. Conveying Non-Source Forms.
|
234 |
+
|
235 |
+
You may convey a covered work in object code form under the terms
|
236 |
+
of sections 4 and 5, provided that you also convey the
|
237 |
+
machine-readable Corresponding Source under the terms of this License,
|
238 |
+
in one of these ways:
|
239 |
+
|
240 |
+
a) Convey the object code in, or embodied in, a physical product
|
241 |
+
(including a physical distribution medium), accompanied by the
|
242 |
+
Corresponding Source fixed on a durable physical medium
|
243 |
+
customarily used for software interchange.
|
244 |
+
|
245 |
+
b) Convey the object code in, or embodied in, a physical product
|
246 |
+
(including a physical distribution medium), accompanied by a
|
247 |
+
written offer, valid for at least three years and valid for as
|
248 |
+
long as you offer spare parts or customer support for that product
|
249 |
+
model, to give anyone who possesses the object code either (1) a
|
250 |
+
copy of the Corresponding Source for all the software in the
|
251 |
+
product that is covered by this License, on a durable physical
|
252 |
+
medium customarily used for software interchange, for a price no
|
253 |
+
more than your reasonable cost of physically performing this
|
254 |
+
conveying of source, or (2) access to copy the
|
255 |
+
Corresponding Source from a network server at no charge.
|
256 |
+
|
257 |
+
c) Convey individual copies of the object code with a copy of the
|
258 |
+
written offer to provide the Corresponding Source. This
|
259 |
+
alternative is allowed only occasionally and noncommercially, and
|
260 |
+
only if you received the object code with such an offer, in accord
|
261 |
+
with subsection 6b.
|
262 |
+
|
263 |
+
d) Convey the object code by offering access from a designated
|
264 |
+
place (gratis or for a charge), and offer equivalent access to the
|
265 |
+
Corresponding Source in the same way through the same place at no
|
266 |
+
further charge. You need not require recipients to copy the
|
267 |
+
Corresponding Source along with the object code. If the place to
|
268 |
+
copy the object code is a network server, the Corresponding Source
|
269 |
+
may be on a different server (operated by you or a third party)
|
270 |
+
that supports equivalent copying facilities, provided you maintain
|
271 |
+
clear directions next to the object code saying where to find the
|
272 |
+
Corresponding Source. Regardless of what server hosts the
|
273 |
+
Corresponding Source, you remain obligated to ensure that it is
|
274 |
+
available for as long as needed to satisfy these requirements.
|
275 |
+
|
276 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
277 |
+
you inform other peers where the object code and Corresponding
|
278 |
+
Source of the work are being offered to the general public at no
|
279 |
+
charge under subsection 6d.
|
280 |
+
|
281 |
+
A separable portion of the object code, whose source code is excluded
|
282 |
+
from the Corresponding Source as a System Library, need not be
|
283 |
+
included in conveying the object code work.
|
284 |
+
|
285 |
+
A "User Product" is either (1) a "consumer product", which means any
|
286 |
+
tangible personal property which is normally used for personal, family,
|
287 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
288 |
+
into a dwelling. In determining whether a product is a consumer product,
|
289 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
290 |
+
product received by a particular user, "normally used" refers to a
|
291 |
+
typical or common use of that class of product, regardless of the status
|
292 |
+
of the particular user or of the way in which the particular user
|
293 |
+
actually uses, or expects or is expected to use, the product. A product
|
294 |
+
is a consumer product regardless of whether the product has substantial
|
295 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
296 |
+
the only significant mode of use of the product.
|
297 |
+
|
298 |
+
"Installation Information" for a User Product means any methods,
|
299 |
+
procedures, authorization keys, or other information required to install
|
300 |
+
and execute modified versions of a covered work in that User Product from
|
301 |
+
a modified version of its Corresponding Source. The information must
|
302 |
+
suffice to ensure that the continued functioning of the modified object
|
303 |
+
code is in no case prevented or interfered with solely because
|
304 |
+
modification has been made.
|
305 |
+
|
306 |
+
If you convey an object code work under this section in, or with, or
|
307 |
+
specifically for use in, a User Product, and the conveying occurs as
|
308 |
+
part of a transaction in which the right of possession and use of the
|
309 |
+
User Product is transferred to the recipient in perpetuity or for a
|
310 |
+
fixed term (regardless of how the transaction is characterized), the
|
311 |
+
Corresponding Source conveyed under this section must be accompanied
|
312 |
+
by the Installation Information. But this requirement does not apply
|
313 |
+
if neither you nor any third party retains the ability to install
|
314 |
+
modified object code on the User Product (for example, the work has
|
315 |
+
been installed in ROM).
|
316 |
+
|
317 |
+
The requirement to provide Installation Information does not include a
|
318 |
+
requirement to continue to provide support service, warranty, or updates
|
319 |
+
for a work that has been modified or installed by the recipient, or for
|
320 |
+
the User Product in which it has been modified or installed. Access to a
|
321 |
+
network may be denied when the modification itself materially and
|
322 |
+
adversely affects the operation of the network or violates the rules and
|
323 |
+
protocols for communication across the network.
|
324 |
+
|
325 |
+
Corresponding Source conveyed, and Installation Information provided,
|
326 |
+
in accord with this section must be in a format that is publicly
|
327 |
+
documented (and with an implementation available to the public in
|
328 |
+
source code form), and must require no special password or key for
|
329 |
+
unpacking, reading or copying.
|
330 |
+
|
331 |
+
7. Additional Terms.
|
332 |
+
|
333 |
+
"Additional permissions" are terms that supplement the terms of this
|
334 |
+
License by making exceptions from one or more of its conditions.
|
335 |
+
Additional permissions that are applicable to the entire Program shall
|
336 |
+
be treated as though they were included in this License, to the extent
|
337 |
+
that they are valid under applicable law. If additional permissions
|
338 |
+
apply only to part of the Program, that part may be used separately
|
339 |
+
under those permissions, but the entire Program remains governed by
|
340 |
+
this License without regard to the additional permissions.
|
341 |
+
|
342 |
+
When you convey a copy of a covered work, you may at your option
|
343 |
+
remove any additional permissions from that copy, or from any part of
|
344 |
+
it. (Additional permissions may be written to require their own
|
345 |
+
removal in certain cases when you modify the work.) You may place
|
346 |
+
additional permissions on material, added by you to a covered work,
|
347 |
+
for which you have or can give appropriate copyright permission.
|
348 |
+
|
349 |
+
Notwithstanding any other provision of this License, for material you
|
350 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
351 |
+
that material) supplement the terms of this License with terms:
|
352 |
+
|
353 |
+
a) Disclaiming warranty or limiting liability differently from the
|
354 |
+
terms of sections 15 and 16 of this License; or
|
355 |
+
|
356 |
+
b) Requiring preservation of specified reasonable legal notices or
|
357 |
+
author attributions in that material or in the Appropriate Legal
|
358 |
+
Notices displayed by works containing it; or
|
359 |
+
|
360 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
361 |
+
requiring that modified versions of such material be marked in
|
362 |
+
reasonable ways as different from the original version; or
|
363 |
+
|
364 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
365 |
+
authors of the material; or
|
366 |
+
|
367 |
+
e) Declining to grant rights under trademark law for use of some
|
368 |
+
trade names, trademarks, or service marks; or
|
369 |
+
|
370 |
+
f) Requiring indemnification of licensors and authors of that
|
371 |
+
material by anyone who conveys the material (or modified versions of
|
372 |
+
it) with contractual assumptions of liability to the recipient, for
|
373 |
+
any liability that these contractual assumptions directly impose on
|
374 |
+
those licensors and authors.
|
375 |
+
|
376 |
+
All other non-permissive additional terms are considered "further
|
377 |
+
restrictions" within the meaning of section 10. If the Program as you
|
378 |
+
received it, or any part of it, contains a notice stating that it is
|
379 |
+
governed by this License along with a term that is a further
|
380 |
+
restriction, you may remove that term. If a license document contains
|
381 |
+
a further restriction but permits relicensing or conveying under this
|
382 |
+
License, you may add to a covered work material governed by the terms
|
383 |
+
of that license document, provided that the further restriction does
|
384 |
+
not survive such relicensing or conveying.
|
385 |
+
|
386 |
+
If you add terms to a covered work in accord with this section, you
|
387 |
+
must place, in the relevant source files, a statement of the
|
388 |
+
additional terms that apply to those files, or a notice indicating
|
389 |
+
where to find the applicable terms.
|
390 |
+
|
391 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
392 |
+
form of a separately written license, or stated as exceptions;
|
393 |
+
the above requirements apply either way.
|
394 |
+
|
395 |
+
8. Termination.
|
396 |
+
|
397 |
+
You may not propagate or modify a covered work except as expressly
|
398 |
+
provided under this License. Any attempt otherwise to propagate or
|
399 |
+
modify it is void, and will automatically terminate your rights under
|
400 |
+
this License (including any patent licenses granted under the third
|
401 |
+
paragraph of section 11).
|
402 |
+
|
403 |
+
However, if you cease all violation of this License, then your
|
404 |
+
license from a particular copyright holder is reinstated (a)
|
405 |
+
provisionally, unless and until the copyright holder explicitly and
|
406 |
+
finally terminates your license, and (b) permanently, if the copyright
|
407 |
+
holder fails to notify you of the violation by some reasonable means
|
408 |
+
prior to 60 days after the cessation.
|
409 |
+
|
410 |
+
Moreover, your license from a particular copyright holder is
|
411 |
+
reinstated permanently if the copyright holder notifies you of the
|
412 |
+
violation by some reasonable means, this is the first time you have
|
413 |
+
received notice of violation of this License (for any work) from that
|
414 |
+
copyright holder, and you cure the violation prior to 30 days after
|
415 |
+
your receipt of the notice.
|
416 |
+
|
417 |
+
Termination of your rights under this section does not terminate the
|
418 |
+
licenses of parties who have received copies or rights from you under
|
419 |
+
this License. If your rights have been terminated and not permanently
|
420 |
+
reinstated, you do not qualify to receive new licenses for the same
|
421 |
+
material under section 10.
|
422 |
+
|
423 |
+
9. Acceptance Not Required for Having Copies.
|
424 |
+
|
425 |
+
You are not required to accept this License in order to receive or
|
426 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
427 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
428 |
+
to receive a copy likewise does not require acceptance. However,
|
429 |
+
nothing other than this License grants you permission to propagate or
|
430 |
+
modify any covered work. These actions infringe copyright if you do
|
431 |
+
not accept this License. Therefore, by modifying or propagating a
|
432 |
+
covered work, you indicate your acceptance of this License to do so.
|
433 |
+
|
434 |
+
10. Automatic Licensing of Downstream Recipients.
|
435 |
+
|
436 |
+
Each time you convey a covered work, the recipient automatically
|
437 |
+
receives a license from the original licensors, to run, modify and
|
438 |
+
propagate that work, subject to this License. You are not responsible
|
439 |
+
for enforcing compliance by third parties with this License.
|
440 |
+
|
441 |
+
An "entity transaction" is a transaction transferring control of an
|
442 |
+
organization, or substantially all assets of one, or subdividing an
|
443 |
+
organization, or merging organizations. If propagation of a covered
|
444 |
+
work results from an entity transaction, each party to that
|
445 |
+
transaction who receives a copy of the work also receives whatever
|
446 |
+
licenses to the work the party's predecessor in interest had or could
|
447 |
+
give under the previous paragraph, plus a right to possession of the
|
448 |
+
Corresponding Source of the work from the predecessor in interest, if
|
449 |
+
the predecessor has it or can get it with reasonable efforts.
|
450 |
+
|
451 |
+
You may not impose any further restrictions on the exercise of the
|
452 |
+
rights granted or affirmed under this License. For example, you may
|
453 |
+
not impose a license fee, royalty, or other charge for exercise of
|
454 |
+
rights granted under this License, and you may not initiate litigation
|
455 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
456 |
+
any patent claim is infringed by making, using, selling, offering for
|
457 |
+
sale, or importing the Program or any portion of it.
|
458 |
+
|
459 |
+
11. Patents.
|
460 |
+
|
461 |
+
A "contributor" is a copyright holder who authorizes use under this
|
462 |
+
License of the Program or a work on which the Program is based. The
|
463 |
+
work thus licensed is called the contributor's "contributor version".
|
464 |
+
|
465 |
+
A contributor's "essential patent claims" are all patent claims
|
466 |
+
owned or controlled by the contributor, whether already acquired or
|
467 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
468 |
+
by this License, of making, using, or selling its contributor version,
|
469 |
+
but do not include claims that would be infringed only as a
|
470 |
+
consequence of further modification of the contributor version. For
|
471 |
+
purposes of this definition, "control" includes the right to grant
|
472 |
+
patent sublicenses in a manner consistent with the requirements of
|
473 |
+
this License.
|
474 |
+
|
475 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
476 |
+
patent license under the contributor's essential patent claims, to
|
477 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
478 |
+
propagate the contents of its contributor version.
|
479 |
+
|
480 |
+
In the following three paragraphs, a "patent license" is any express
|
481 |
+
agreement or commitment, however denominated, not to enforce a patent
|
482 |
+
(such as an express permission to practice a patent or covenant not to
|
483 |
+
sue for patent infringement). To "grant" such a patent license to a
|
484 |
+
party means to make such an agreement or commitment not to enforce a
|
485 |
+
patent against the party.
|
486 |
+
|
487 |
+
If you convey a covered work, knowingly relying on a patent license,
|
488 |
+
and the Corresponding Source of the work is not available for anyone
|
489 |
+
to copy, free of charge and under the terms of this License, through a
|
490 |
+
publicly available network server or other readily accessible means,
|
491 |
+
then you must either (1) cause the Corresponding Source to be so
|
492 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
493 |
+
patent license for this particular work, or (3) arrange, in a manner
|
494 |
+
consistent with the requirements of this License, to extend the patent
|
495 |
+
license to downstream recipients. "Knowingly relying" means you have
|
496 |
+
actual knowledge that, but for the patent license, your conveying the
|
497 |
+
covered work in a country, or your recipient's use of the covered work
|
498 |
+
in a country, would infringe one or more identifiable patents in that
|
499 |
+
country that you have reason to believe are valid.
|
500 |
+
|
501 |
+
If, pursuant to or in connection with a single transaction or
|
502 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
503 |
+
covered work, and grant a patent license to some of the parties
|
504 |
+
receiving the covered work authorizing them to use, propagate, modify
|
505 |
+
or convey a specific copy of the covered work, then the patent license
|
506 |
+
you grant is automatically extended to all recipients of the covered
|
507 |
+
work and works based on it.
|
508 |
+
|
509 |
+
A patent license is "discriminatory" if it does not include within
|
510 |
+
the scope of its coverage, prohibits the exercise of, or is
|
511 |
+
conditioned on the non-exercise of one or more of the rights that are
|
512 |
+
specifically granted under this License. You may not convey a covered
|
513 |
+
work if you are a party to an arrangement with a third party that is
|
514 |
+
in the business of distributing software, under which you make payment
|
515 |
+
to the third party based on the extent of your activity of conveying
|
516 |
+
the work, and under which the third party grants, to any of the
|
517 |
+
parties who would receive the covered work from you, a discriminatory
|
518 |
+
patent license (a) in connection with copies of the covered work
|
519 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
520 |
+
for and in connection with specific products or compilations that
|
521 |
+
contain the covered work, unless you entered into that arrangement,
|
522 |
+
or that patent license was granted, prior to 28 March 2007.
|
523 |
+
|
524 |
+
Nothing in this License shall be construed as excluding or limiting
|
525 |
+
any implied license or other defenses to infringement that may
|
526 |
+
otherwise be available to you under applicable patent law.
|
527 |
+
|
528 |
+
12. No Surrender of Others' Freedom.
|
529 |
+
|
530 |
+
If conditions are imposed on you (whether by court order, agreement or
|
531 |
+
otherwise) that contradict the conditions of this License, they do not
|
532 |
+
excuse you from the conditions of this License. If you cannot convey a
|
533 |
+
covered work so as to satisfy simultaneously your obligations under this
|
534 |
+
License and any other pertinent obligations, then as a consequence you may
|
535 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
536 |
+
to collect a royalty for further conveying from those to whom you convey
|
537 |
+
the Program, the only way you could satisfy both those terms and this
|
538 |
+
License would be to refrain entirely from conveying the Program.
|
539 |
+
|
540 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
541 |
+
|
542 |
+
Notwithstanding any other provision of this License, if you modify the
|
543 |
+
Program, your modified version must prominently offer all users
|
544 |
+
interacting with it remotely through a computer network (if your version
|
545 |
+
supports such interaction) an opportunity to receive the Corresponding
|
546 |
+
Source of your version by providing access to the Corresponding Source
|
547 |
+
from a network server at no charge, through some standard or customary
|
548 |
+
means of facilitating copying of software. This Corresponding Source
|
549 |
+
shall include the Corresponding Source for any work covered by version 3
|
550 |
+
of the GNU General Public License that is incorporated pursuant to the
|
551 |
+
following paragraph.
|
552 |
+
|
553 |
+
Notwithstanding any other provision of this License, you have
|
554 |
+
permission to link or combine any covered work with a work licensed
|
555 |
+
under version 3 of the GNU General Public License into a single
|
556 |
+
combined work, and to convey the resulting work. The terms of this
|
557 |
+
License will continue to apply to the part which is the covered work,
|
558 |
+
but the work with which it is combined will remain governed by version
|
559 |
+
3 of the GNU General Public License.
|
560 |
+
|
561 |
+
14. Revised Versions of this License.
|
562 |
+
|
563 |
+
The Free Software Foundation may publish revised and/or new versions of
|
564 |
+
the GNU Affero General Public License from time to time. Such new versions
|
565 |
+
will be similar in spirit to the present version, but may differ in detail to
|
566 |
+
address new problems or concerns.
|
567 |
+
|
568 |
+
Each version is given a distinguishing version number. If the
|
569 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
570 |
+
Public License "or any later version" applies to it, you have the
|
571 |
+
option of following the terms and conditions either of that numbered
|
572 |
+
version or of any later version published by the Free Software
|
573 |
+
Foundation. If the Program does not specify a version number of the
|
574 |
+
GNU Affero General Public License, you may choose any version ever published
|
575 |
+
by the Free Software Foundation.
|
576 |
+
|
577 |
+
If the Program specifies that a proxy can decide which future
|
578 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
579 |
+
public statement of acceptance of a version permanently authorizes you
|
580 |
+
to choose that version for the Program.
|
581 |
+
|
582 |
+
Later license versions may give you additional or different
|
583 |
+
permissions. However, no additional obligations are imposed on any
|
584 |
+
author or copyright holder as a result of your choosing to follow a
|
585 |
+
later version.
|
586 |
+
|
587 |
+
15. Disclaimer of Warranty.
|
588 |
+
|
589 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
590 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
591 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
592 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
593 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
594 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
595 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
596 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
597 |
+
|
598 |
+
16. Limitation of Liability.
|
599 |
+
|
600 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
601 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
602 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
603 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
604 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
605 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
606 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
607 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
608 |
+
SUCH DAMAGES.
|
609 |
+
|
610 |
+
17. Interpretation of Sections 15 and 16.
|
611 |
+
|
612 |
+
If the disclaimer of warranty and limitation of liability provided
|
613 |
+
above cannot be given local legal effect according to their terms,
|
614 |
+
reviewing courts shall apply local law that most closely approximates
|
615 |
+
an absolute waiver of all civil liability in connection with the
|
616 |
+
Program, unless a warranty or assumption of liability accompanies a
|
617 |
+
copy of the Program in return for a fee.
|
618 |
+
|
619 |
+
END OF TERMS AND CONDITIONS
|
620 |
+
|
621 |
+
How to Apply These Terms to Your New Programs
|
622 |
+
|
623 |
+
If you develop a new program, and you want it to be of the greatest
|
624 |
+
possible use to the public, the best way to achieve this is to make it
|
625 |
+
free software which everyone can redistribute and change under these terms.
|
626 |
+
|
627 |
+
To do so, attach the following notices to the program. It is safest
|
628 |
+
to attach them to the start of each source file to most effectively
|
629 |
+
state the exclusion of warranty; and each file should have at least
|
630 |
+
the "copyright" line and a pointer to where the full notice is found.
|
631 |
+
|
632 |
+
<one line to give the program's name and a brief idea of what it does.>
|
633 |
+
Copyright (C) <year> <name of author>
|
634 |
+
|
635 |
+
This program is free software: you can redistribute it and/or modify
|
636 |
+
it under the terms of the GNU Affero General Public License as published
|
637 |
+
by the Free Software Foundation, either version 3 of the License, or
|
638 |
+
(at your option) any later version.
|
639 |
+
|
640 |
+
This program is distributed in the hope that it will be useful,
|
641 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
642 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
643 |
+
GNU Affero General Public License for more details.
|
644 |
+
|
645 |
+
You should have received a copy of the GNU Affero General Public License
|
646 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
647 |
+
|
648 |
+
Also add information on how to contact you by electronic and paper mail.
|
649 |
+
|
650 |
+
If your software can interact with users remotely through a computer
|
651 |
+
network, you should also make sure that it provides a way for users to
|
652 |
+
get its source. For example, if your program is a web application, its
|
653 |
+
interface could display a "Source" link that leads users to an archive
|
654 |
+
of the code. There are many ways you could offer source, and different
|
655 |
+
solutions will be better for different programs; see section 13 for the
|
656 |
+
specific requirements.
|
657 |
+
|
658 |
+
You should also get your employer (if you work as a programmer) or school,
|
659 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
660 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
661 |
+
<https://www.gnu.org/licenses/>.
|
roop-unleashed-main/README.md
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# roop-unleashed
|
2 |
+
|
3 |
+
[Changelog](#changelog) • [Usage](#usage) • [Wiki](https://github.com/C0untFloyd/roop-unleashed/wiki)
|
4 |
+
|
5 |
+
|
6 |
+
Uncensored Deepfakes for images and videos without training and an easy-to-use GUI.
|
7 |
+
|
8 |
+
|
9 |
+
![Screen](https://github.com/C0untFloyd/roop-unleashed/assets/131583554/6ee6860d-efbe-4337-8c62-a67598863637)
|
10 |
+
|
11 |
+
### Features
|
12 |
+
|
13 |
+
- Platform-independant Browser GUI
|
14 |
+
- Selection of multiple input/output faces in one go
|
15 |
+
- Many different swapping modes, first detected, face selections, by gender
|
16 |
+
- Batch processing of images/videos
|
17 |
+
- Masking of face occluders using text prompts or automatically
|
18 |
+
- Optional Face Upscaler/Restoration using different enhancers
|
19 |
+
- Preview swapping from different video frames
|
20 |
+
- Live Fake Cam using your webcam
|
21 |
+
- Extras Tab for cutting videos etc.
|
22 |
+
- Settings - storing configuration for next session
|
23 |
+
- Theme Support
|
24 |
+
|
25 |
+
and lots more...
|
26 |
+
|
27 |
+
|
28 |
+
## Disclaimer
|
29 |
+
|
30 |
+
This project is for technical and academic use only.
|
31 |
+
Users of this software are expected to use this software responsibly while abiding the local law. If a face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. Developers of this software will not be responsible for actions of end-users.
|
32 |
+
**Please do not apply it to illegal and unethical scenarios.**
|
33 |
+
|
34 |
+
In the event of violation of the legal and ethical requirements of the user's country or region, this code repository is exempt from liability
|
35 |
+
|
36 |
+
### Installation
|
37 |
+
|
38 |
+
Please refer to the [wiki](https://github.com/C0untFloyd/roop-unleashed/wiki).
|
39 |
+
|
40 |
+
#### macOS Installation
|
41 |
+
Simply run the following command. It will check and install all dependencies if necessary.
|
42 |
+
|
43 |
+
`/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/PJF16/roop-unleashed/master/installer/macOSinstaller.sh)"`
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
### Usage
|
48 |
+
|
49 |
+
- Windows: run the `windows_run.bat` from the Installer.
|
50 |
+
- Linux: `python run.py`
|
51 |
+
- macOS: `sh runMacOS.sh`
|
52 |
+
- Dockerfile:
|
53 |
+
```shell
|
54 |
+
docker build -t roop-unleashed . && docker run -t \
|
55 |
+
-p 7860:7860 \
|
56 |
+
-v ./config.yaml:/app/config.yaml \
|
57 |
+
-v ./models:/app/models \
|
58 |
+
-v ./temp:/app/temp \
|
59 |
+
-v ./output:/app/output \
|
60 |
+
roop-unleashed
|
61 |
+
```
|
62 |
+
|
63 |
+
<a target="_blank" href="https://colab.research.google.com/github/C0untFloyd/roop-unleashed/blob/main/roop-unleashed.ipynb">
|
64 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
65 |
+
</a>
|
66 |
+
|
67 |
+
|
68 |
+
Additional commandline arguments are currently unsupported and settings should be done via the UI.
|
69 |
+
|
70 |
+
> Note: When you run this program for the first time, it will download some models roughly ~2Gb in size.
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
### Changelog
|
76 |
+
|
77 |
+
**31.12.2024** v4.4.0 Hotfix
|
78 |
+
|
79 |
+
Bugfix: Updated Colab to use present Cuda Drivers
|
80 |
+
Bugfix: Live-Cam not working because of new face swapper
|
81 |
+
Set default swapping model back to Insightface
|
82 |
+
|
83 |
+
Happy New Year!
|
84 |
+
|
85 |
+
|
86 |
+
**30.12.2024** v4.4.0
|
87 |
+
|
88 |
+
- Added random face selection mode
|
89 |
+
- Added alternative face swapping model with 128px & 256 px output ([ReSwapper](https://github.com/somanchiu/ReSwapper/tree/main))
|
90 |
+
- Video repair added to Extras Tab
|
91 |
+
- Updated most packages to newer versions. CUDA >= 12.4 now required!
|
92 |
+
- Several minor bugfixes and QoL Changes
|
93 |
+
|
94 |
+
|
95 |
+
**28.9.2024** v4.3.1
|
96 |
+
|
97 |
+
- Bugfix: Several possible memory leaks
|
98 |
+
- Added different output modes, e.g. to virtual cam stream
|
99 |
+
- New swapping mode "All input faces"
|
100 |
+
- Average total fps displayed and setting for autorun
|
101 |
+
|
102 |
+
|
103 |
+
**16.9.2024** v4.2.8
|
104 |
+
|
105 |
+
- Bugfix: Starting roop-unleashed without NVIDIA gpu but cuda option enabled
|
106 |
+
- Bugfix: Target Faces couldn't be moved left/right
|
107 |
+
- Bugfix: Enhancement and upscaling working again in virtual cam
|
108 |
+
- Corrupt videos caught when adding to target files, displaying warning msg
|
109 |
+
- Source Files Component cleared after face detection to release temp files
|
110 |
+
- Added masking and mouth restore options to virtual cam
|
111 |
+
|
112 |
+
|
113 |
+
**9.9.2024** v4.2.3
|
114 |
+
|
115 |
+
- Hotfix for gradio pydantic issue with fastapi
|
116 |
+
- Upgraded to Gradio 4.43 hoping it will fix remaining issues
|
117 |
+
- Added new action when no face detected -> use last swapped
|
118 |
+
- Specified image format for image controls - opening new tabs on preview images possible again!
|
119 |
+
- Hardcoded image output format for livecam to jpeg - might be faster than previous webp
|
120 |
+
- Chain events to be only executed if previous was a success
|
121 |
+
|
122 |
+
|
123 |
+
**5.9.2024** v4.2.0
|
124 |
+
|
125 |
+
- Added ability to move input & target faces order
|
126 |
+
- New CLI Arguments override settings
|
127 |
+
- Small UI changes to faceswapping tab
|
128 |
+
- Added mask option and code for restoration of original mouth area
|
129 |
+
- Updated gradio to v4.42.0
|
130 |
+
- Added CLI Arguments --server_share and --cuda_device_id
|
131 |
+
- Added webp image support
|
132 |
+
|
133 |
+
|
134 |
+
**15.07.2024** v4.1.1
|
135 |
+
|
136 |
+
- Bugfix: Post-processing after swapping
|
137 |
+
|
138 |
+
|
139 |
+
**14.07.2024** v4.1.0
|
140 |
+
|
141 |
+
- Added subsample upscaling to increase swap resolution
|
142 |
+
- Upgraded gradio
|
143 |
+
|
144 |
+
|
145 |
+
**12.05.2024** v4.0.0
|
146 |
+
|
147 |
+
- Bugfix: Unnecessary init every frame in live-cam
|
148 |
+
- Bugfix: Installer downloading insightface package each run
|
149 |
+
- Added xseg masking to live-cam
|
150 |
+
- Added realesrganx2 to frame processors
|
151 |
+
- Upgraded some requirements
|
152 |
+
- Added subtypes and different model support to frame processors
|
153 |
+
- Allow frame processors to change resolutions of videos
|
154 |
+
- Different OpenCV Cap for MacOS Virtual Cam
|
155 |
+
- Added complete frame processing to extras tab
|
156 |
+
- Colorize, upscale and misc filters added
|
157 |
+
|
158 |
+
|
159 |
+
**22.04.2024** v3.9.0
|
160 |
+
|
161 |
+
- Bugfix: Face detection bounding box corrupt values at weird angles
|
162 |
+
- Rewrote mask previewing to work with every model
|
163 |
+
- Switching mask engines toggles text interactivity
|
164 |
+
- Clearing target files, resets face selection dropdown
|
165 |
+
- Massive rewrite of swapping architecture, needed for xseg implementation
|
166 |
+
- Added DFL Xseg Support for partial face occlusion
|
167 |
+
- Face masking only runs when there is a face detected
|
168 |
+
- Removed unnecessary toggle checkbox for text masking
|
169 |
+
|
170 |
+
|
171 |
+
**22.03.2024** v3.6.5
|
172 |
+
|
173 |
+
- Bugfix: Installer pulling latest update on first installation
|
174 |
+
- Bugfix: Regression issue, blurring/erosion missing from face swap
|
175 |
+
- Exposed erosion and blur amounts to UI
|
176 |
+
- Using same values for manual masking too
|
177 |
+
|
178 |
+
|
179 |
+
**20.03.2024** v3.6.3
|
180 |
+
|
181 |
+
- Bugfix: Workaround for Gradio Slider Change Bug
|
182 |
+
- Bugfix: CSS Styling to fix Gradio Image Height Bug
|
183 |
+
- Made face swapping mask offsets resolution independant
|
184 |
+
- Show offset mask as overlay
|
185 |
+
- Changed layout for masking
|
186 |
+
|
187 |
+
|
188 |
+
**18.03.2024** v3.6.0
|
189 |
+
|
190 |
+
- Updated to Gradio 4.21.0 - requiring many changes under the hood
|
191 |
+
- New manual masking (draw the mask yourself)
|
192 |
+
- Extras Tab, streamlined cutting/joining videos
|
193 |
+
- Re-added face selection by gender (on-demand loading, default turned off)
|
194 |
+
- Removed unnecessary activate live-cam option
|
195 |
+
- Added time info to preview frame and changed frame slider event to allow faster changes
|
196 |
+
|
197 |
+
|
198 |
+
**10.03.2024** v3.5.5
|
199 |
+
|
200 |
+
- Bugfix: Installer Path Env
|
201 |
+
- Bugfix: file attributes
|
202 |
+
- Video processing checks for presence of ffmpeg and displays warning if not found
|
203 |
+
- Removed gender + age detection to speed up processing. Option removed from UI
|
204 |
+
- Replaced restoreformer with restoreformer++
|
205 |
+
- Live Cam recoded to run separate from virtual cam and without blocking controls
|
206 |
+
- Swapping with only 1 target face allows selecting from several input faces
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
**08.01.2024** v3.5.0
|
211 |
+
|
212 |
+
- Bugfix: wrong access options when creating folders
|
213 |
+
- New auto rotation of horizontal faces, fixing bad landmark positions (expanded on ![PR 364](https://github.com/C0untFloyd/roop-unleashed/pull/364))
|
214 |
+
- Simple VR Option for stereo Images/Movies, best used in selected face mode
|
215 |
+
- Added RestoreFormer Enhancer - https://github.com/wzhouxiff/RestoreFormer
|
216 |
+
- Bumped up package versions for onnx/Torch etc.
|
217 |
+
|
218 |
+
|
219 |
+
**16.10.2023** v3.3.4
|
220 |
+
|
221 |
+
**11.8.2023** v2.7.0
|
222 |
+
|
223 |
+
Initial Gradio Version - old TkInter Version now deprecated
|
224 |
+
|
225 |
+
- Re-added unified padding to face enhancers
|
226 |
+
- Fixed DMDNet for all resolutions
|
227 |
+
- Selecting target face now automatically switches swapping mode to selected
|
228 |
+
- GPU providers are correctly set using the GUI (needs restart currently)
|
229 |
+
- Local output folder can be opened from page
|
230 |
+
- Unfinished extras functions disabled for now
|
231 |
+
- Installer checks out specific commit, allowing to go back to first install
|
232 |
+
- Updated readme for new gradio version
|
233 |
+
- Updated Colab
|
234 |
+
|
235 |
+
|
236 |
+
# Acknowledgements
|
237 |
+
|
238 |
+
Lots of ideas, code or pre-trained models borrowed from the following projects:
|
239 |
+
|
240 |
+
https://github.com/deepinsight/insightface<br />
|
241 |
+
https://github.com/s0md3v/roop<br />
|
242 |
+
https://github.com/AUTOMATIC1111/stable-diffusion-webui<br />
|
243 |
+
https://github.com/Hillobar/Rope<br />
|
244 |
+
https://github.com/TencentARC/GFPGAN<br />
|
245 |
+
https://github.com/kadirnar/codeformer-pip<br />
|
246 |
+
https://github.com/csxmli2016/DMDNet<br />
|
247 |
+
https://github.com/glucauze/sd-webui-faceswaplab<br />
|
248 |
+
https://github.com/ykk648/face_power<br />
|
249 |
+
|
250 |
+
<br />
|
251 |
+
<br />
|
252 |
+
Thanks to all developers!
|
253 |
+
|
roop-unleashed-main/clip/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .clip import *
|
roop-unleashed-main/clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
roop-unleashed-main/clip/clip.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Union, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from .model import build_model
|
13 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
14 |
+
|
15 |
+
try:
|
16 |
+
from torchvision.transforms import InterpolationMode
|
17 |
+
BICUBIC = InterpolationMode.BICUBIC
|
18 |
+
except ImportError:
|
19 |
+
BICUBIC = Image.BICUBIC
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = ["available_models", "load", "tokenize"]
|
24 |
+
_tokenizer = _Tokenizer()
|
25 |
+
|
26 |
+
_MODELS = {
|
27 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
28 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
29 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
30 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
31 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
32 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
33 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
34 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
35 |
+
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def _download(url: str, root: str):
|
40 |
+
os.makedirs(root, exist_ok=True)
|
41 |
+
filename = os.path.basename(url)
|
42 |
+
|
43 |
+
expected_sha256 = url.split("/")[-2]
|
44 |
+
download_target = os.path.join(root, filename)
|
45 |
+
|
46 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
47 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
48 |
+
|
49 |
+
if os.path.isfile(download_target):
|
50 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
51 |
+
return download_target
|
52 |
+
else:
|
53 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
54 |
+
|
55 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
56 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
57 |
+
while True:
|
58 |
+
buffer = source.read(8192)
|
59 |
+
if not buffer:
|
60 |
+
break
|
61 |
+
|
62 |
+
output.write(buffer)
|
63 |
+
loop.update(len(buffer))
|
64 |
+
|
65 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
66 |
+
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
|
67 |
+
|
68 |
+
return download_target
|
69 |
+
|
70 |
+
|
71 |
+
def _convert_image_to_rgb(image):
|
72 |
+
return image.convert("RGB")
|
73 |
+
|
74 |
+
|
75 |
+
def _transform(n_px):
|
76 |
+
return Compose([
|
77 |
+
Resize(n_px, interpolation=BICUBIC),
|
78 |
+
CenterCrop(n_px),
|
79 |
+
_convert_image_to_rgb,
|
80 |
+
ToTensor(),
|
81 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
82 |
+
])
|
83 |
+
|
84 |
+
|
85 |
+
def available_models() -> List[str]:
|
86 |
+
"""Returns the names of available CLIP models"""
|
87 |
+
return list(_MODELS.keys())
|
88 |
+
|
89 |
+
|
90 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
|
91 |
+
"""Load a CLIP model
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
name : str
|
96 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
97 |
+
|
98 |
+
device : Union[str, torch.device]
|
99 |
+
The device to put the loaded model
|
100 |
+
|
101 |
+
jit : bool
|
102 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
103 |
+
|
104 |
+
download_root: str
|
105 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
106 |
+
|
107 |
+
Returns
|
108 |
+
-------
|
109 |
+
model : torch.nn.Module
|
110 |
+
The CLIP model
|
111 |
+
|
112 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
113 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
114 |
+
"""
|
115 |
+
if name in _MODELS:
|
116 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
117 |
+
elif os.path.isfile(name):
|
118 |
+
model_path = name
|
119 |
+
else:
|
120 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
121 |
+
|
122 |
+
with open(model_path, 'rb') as opened_file:
|
123 |
+
try:
|
124 |
+
# loading JIT archive
|
125 |
+
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
|
126 |
+
state_dict = None
|
127 |
+
except RuntimeError:
|
128 |
+
# loading saved state dict
|
129 |
+
if jit:
|
130 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
131 |
+
jit = False
|
132 |
+
state_dict = torch.load(opened_file, map_location="cpu")
|
133 |
+
|
134 |
+
if not jit:
|
135 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
136 |
+
if str(device) == "cpu":
|
137 |
+
model.float()
|
138 |
+
return model, _transform(model.visual.input_resolution)
|
139 |
+
|
140 |
+
# patch the device names
|
141 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
142 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
143 |
+
|
144 |
+
def _node_get(node: torch._C.Node, key: str):
|
145 |
+
"""Gets attributes of a node which is polymorphic over return type.
|
146 |
+
|
147 |
+
From https://github.com/pytorch/pytorch/pull/82628
|
148 |
+
"""
|
149 |
+
sel = node.kindOf(key)
|
150 |
+
return getattr(node, sel)(key)
|
151 |
+
|
152 |
+
def patch_device(module):
|
153 |
+
try:
|
154 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
155 |
+
except RuntimeError:
|
156 |
+
graphs = []
|
157 |
+
|
158 |
+
if hasattr(module, "forward1"):
|
159 |
+
graphs.append(module.forward1.graph)
|
160 |
+
|
161 |
+
for graph in graphs:
|
162 |
+
for node in graph.findAllNodes("prim::Constant"):
|
163 |
+
if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"):
|
164 |
+
node.copyAttributes(device_node)
|
165 |
+
|
166 |
+
model.apply(patch_device)
|
167 |
+
patch_device(model.encode_image)
|
168 |
+
patch_device(model.encode_text)
|
169 |
+
|
170 |
+
# patch dtype to float32 on CPU
|
171 |
+
if str(device) == "cpu":
|
172 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
173 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
174 |
+
float_node = float_input.node()
|
175 |
+
|
176 |
+
def patch_float(module):
|
177 |
+
try:
|
178 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
179 |
+
except RuntimeError:
|
180 |
+
graphs = []
|
181 |
+
|
182 |
+
if hasattr(module, "forward1"):
|
183 |
+
graphs.append(module.forward1.graph)
|
184 |
+
|
185 |
+
for graph in graphs:
|
186 |
+
for node in graph.findAllNodes("aten::to"):
|
187 |
+
inputs = list(node.inputs())
|
188 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
189 |
+
if _node_get(inputs[i].node(), "value") == 5:
|
190 |
+
inputs[i].node().copyAttributes(float_node)
|
191 |
+
|
192 |
+
model.apply(patch_float)
|
193 |
+
patch_float(model.encode_image)
|
194 |
+
patch_float(model.encode_text)
|
195 |
+
|
196 |
+
model.float()
|
197 |
+
|
198 |
+
return model, _transform(model.input_resolution.item())
|
199 |
+
|
200 |
+
|
201 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
|
202 |
+
"""
|
203 |
+
Returns the tokenized representation of given input string(s)
|
204 |
+
|
205 |
+
Parameters
|
206 |
+
----------
|
207 |
+
texts : Union[str, List[str]]
|
208 |
+
An input string or a list of input strings to tokenize
|
209 |
+
|
210 |
+
context_length : int
|
211 |
+
The context length to use; all CLIP models use 77 as the context length
|
212 |
+
|
213 |
+
truncate: bool
|
214 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
215 |
+
|
216 |
+
Returns
|
217 |
+
-------
|
218 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
|
219 |
+
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
|
220 |
+
"""
|
221 |
+
if isinstance(texts, str):
|
222 |
+
texts = [texts]
|
223 |
+
|
224 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
225 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
226 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
227 |
+
#if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
|
228 |
+
# result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
229 |
+
#else:
|
230 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
|
231 |
+
|
232 |
+
for i, tokens in enumerate(all_tokens):
|
233 |
+
if len(tokens) > context_length:
|
234 |
+
if truncate:
|
235 |
+
tokens = tokens[:context_length]
|
236 |
+
tokens[-1] = eot_token
|
237 |
+
else:
|
238 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
239 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
240 |
+
|
241 |
+
return result
|
roop-unleashed-main/clip/clipseg.py
ADDED
@@ -0,0 +1,538 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from os.path import basename, dirname, join, isfile
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as nnf
|
6 |
+
from torch.nn.modules.activation import ReLU
|
7 |
+
|
8 |
+
|
9 |
+
def get_prompt_list(prompt):
|
10 |
+
if prompt == 'plain':
|
11 |
+
return ['{}']
|
12 |
+
elif prompt == 'fixed':
|
13 |
+
return ['a photo of a {}.']
|
14 |
+
elif prompt == 'shuffle':
|
15 |
+
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
|
16 |
+
elif prompt == 'shuffle+':
|
17 |
+
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
|
18 |
+
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
|
19 |
+
'a bad photo of a {}.', 'a photo of the {}.']
|
20 |
+
else:
|
21 |
+
raise ValueError('Invalid value for prompt')
|
22 |
+
|
23 |
+
|
24 |
+
def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
|
25 |
+
"""
|
26 |
+
Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
|
27 |
+
The mlp and layer norm come from CLIP.
|
28 |
+
x: input.
|
29 |
+
b: multihead attention module.
|
30 |
+
"""
|
31 |
+
|
32 |
+
x_ = b.ln_1(x)
|
33 |
+
q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
|
34 |
+
tgt_len, bsz, embed_dim = q.size()
|
35 |
+
|
36 |
+
head_dim = embed_dim // b.attn.num_heads
|
37 |
+
scaling = float(head_dim) ** -0.5
|
38 |
+
|
39 |
+
q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
40 |
+
k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
41 |
+
v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
42 |
+
|
43 |
+
q = q * scaling
|
44 |
+
|
45 |
+
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2
|
46 |
+
if attn_mask is not None:
|
47 |
+
|
48 |
+
|
49 |
+
attn_mask_type, attn_mask = attn_mask
|
50 |
+
n_heads = attn_output_weights.size(0) // attn_mask.size(0)
|
51 |
+
attn_mask = attn_mask.repeat(n_heads, 1)
|
52 |
+
|
53 |
+
if attn_mask_type == 'cls_token':
|
54 |
+
# the mask only affects similarities compared to the readout-token.
|
55 |
+
attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
|
56 |
+
# attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
|
57 |
+
|
58 |
+
if attn_mask_type == 'all':
|
59 |
+
# print(attn_output_weights.shape, attn_mask[:, None].shape)
|
60 |
+
attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
|
61 |
+
|
62 |
+
|
63 |
+
attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
|
64 |
+
|
65 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
66 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
67 |
+
attn_output = b.attn.out_proj(attn_output)
|
68 |
+
|
69 |
+
x = x + attn_output
|
70 |
+
x = x + b.mlp(b.ln_2(x))
|
71 |
+
|
72 |
+
if with_aff:
|
73 |
+
return x, attn_output_weights
|
74 |
+
else:
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class CLIPDenseBase(nn.Module):
|
79 |
+
|
80 |
+
def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
|
81 |
+
super().__init__()
|
82 |
+
|
83 |
+
import clip
|
84 |
+
|
85 |
+
# prec = torch.FloatTensor
|
86 |
+
self.clip_model, _ = clip.load(version, device='cpu', jit=False)
|
87 |
+
self.model = self.clip_model.visual
|
88 |
+
|
89 |
+
# if not None, scale conv weights such that we obtain n_tokens.
|
90 |
+
self.n_tokens = n_tokens
|
91 |
+
|
92 |
+
for p in self.clip_model.parameters():
|
93 |
+
p.requires_grad_(False)
|
94 |
+
|
95 |
+
# conditional
|
96 |
+
if reduce_cond is not None:
|
97 |
+
self.reduce_cond = nn.Linear(512, reduce_cond)
|
98 |
+
for p in self.reduce_cond.parameters():
|
99 |
+
p.requires_grad_(False)
|
100 |
+
else:
|
101 |
+
self.reduce_cond = None
|
102 |
+
|
103 |
+
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
104 |
+
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
105 |
+
|
106 |
+
self.reduce = nn.Linear(768, reduce_dim)
|
107 |
+
|
108 |
+
self.prompt_list = get_prompt_list(prompt)
|
109 |
+
|
110 |
+
# precomputed prompts
|
111 |
+
import pickle
|
112 |
+
if isfile('precomputed_prompt_vectors.pickle'):
|
113 |
+
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
|
114 |
+
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
|
115 |
+
else:
|
116 |
+
self.precomputed_prompts = dict()
|
117 |
+
|
118 |
+
def rescaled_pos_emb(self, new_size):
|
119 |
+
assert len(new_size) == 2
|
120 |
+
|
121 |
+
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
|
122 |
+
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
|
123 |
+
return torch.cat([self.model.positional_embedding[:1], b])
|
124 |
+
|
125 |
+
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
|
126 |
+
|
127 |
+
|
128 |
+
with torch.no_grad():
|
129 |
+
|
130 |
+
inp_size = x_inp.shape[2:]
|
131 |
+
|
132 |
+
if self.n_tokens is not None:
|
133 |
+
stride2 = x_inp.shape[2] // self.n_tokens
|
134 |
+
conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
|
135 |
+
x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
|
136 |
+
else:
|
137 |
+
x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
|
138 |
+
|
139 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
140 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
141 |
+
|
142 |
+
x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
143 |
+
|
144 |
+
standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
|
145 |
+
|
146 |
+
if x.shape[1] != standard_n_tokens:
|
147 |
+
new_shape = int(math.sqrt(x.shape[1]-1))
|
148 |
+
x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
|
149 |
+
else:
|
150 |
+
x = x + self.model.positional_embedding.to(x.dtype)
|
151 |
+
|
152 |
+
x = self.model.ln_pre(x)
|
153 |
+
|
154 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
155 |
+
|
156 |
+
activations, affinities = [], []
|
157 |
+
for i, res_block in enumerate(self.model.transformer.resblocks):
|
158 |
+
|
159 |
+
if mask is not None:
|
160 |
+
mask_layer, mask_type, mask_tensor = mask
|
161 |
+
if mask_layer == i or mask_layer == 'all':
|
162 |
+
# import ipdb; ipdb.set_trace()
|
163 |
+
size = int(math.sqrt(x.shape[0] - 1))
|
164 |
+
|
165 |
+
attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
|
166 |
+
|
167 |
+
else:
|
168 |
+
attn_mask = None
|
169 |
+
else:
|
170 |
+
attn_mask = None
|
171 |
+
|
172 |
+
x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)
|
173 |
+
|
174 |
+
if i in extract_layers:
|
175 |
+
affinities += [aff_per_head]
|
176 |
+
|
177 |
+
#if self.n_tokens is not None:
|
178 |
+
# activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
|
179 |
+
#else:
|
180 |
+
activations += [x]
|
181 |
+
|
182 |
+
if len(extract_layers) > 0 and i == max(extract_layers) and skip:
|
183 |
+
print('early skip')
|
184 |
+
break
|
185 |
+
|
186 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
187 |
+
x = self.model.ln_post(x[:, 0, :])
|
188 |
+
|
189 |
+
if self.model.proj is not None:
|
190 |
+
x = x @ self.model.proj
|
191 |
+
|
192 |
+
return x, activations, affinities
|
193 |
+
|
194 |
+
def sample_prompts(self, words, prompt_list=None):
|
195 |
+
|
196 |
+
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
|
197 |
+
|
198 |
+
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
|
199 |
+
prompts = [prompt_list[i] for i in prompt_indices]
|
200 |
+
return [promt.format(w) for promt, w in zip(prompts, words)]
|
201 |
+
|
202 |
+
def get_cond_vec(self, conditional, batch_size):
|
203 |
+
# compute conditional from a single string
|
204 |
+
if conditional is not None and type(conditional) == str:
|
205 |
+
cond = self.compute_conditional(conditional)
|
206 |
+
cond = cond.repeat(batch_size, 1)
|
207 |
+
|
208 |
+
# compute conditional from string list/tuple
|
209 |
+
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
|
210 |
+
assert len(conditional) == batch_size
|
211 |
+
cond = self.compute_conditional(conditional)
|
212 |
+
|
213 |
+
# use conditional directly
|
214 |
+
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
|
215 |
+
cond = conditional
|
216 |
+
|
217 |
+
# compute conditional from image
|
218 |
+
elif conditional is not None and type(conditional) == torch.Tensor:
|
219 |
+
with torch.no_grad():
|
220 |
+
cond, _, _ = self.visual_forward(conditional)
|
221 |
+
else:
|
222 |
+
raise ValueError('invalid conditional')
|
223 |
+
return cond
|
224 |
+
|
225 |
+
def compute_conditional(self, conditional):
|
226 |
+
import clip
|
227 |
+
|
228 |
+
dev = next(self.parameters()).device
|
229 |
+
|
230 |
+
if type(conditional) in {list, tuple}:
|
231 |
+
text_tokens = clip.tokenize(conditional).to(dev)
|
232 |
+
cond = self.clip_model.encode_text(text_tokens)
|
233 |
+
else:
|
234 |
+
if conditional in self.precomputed_prompts:
|
235 |
+
cond = self.precomputed_prompts[conditional].float().to(dev)
|
236 |
+
else:
|
237 |
+
text_tokens = clip.tokenize([conditional]).to(dev)
|
238 |
+
cond = self.clip_model.encode_text(text_tokens)[0]
|
239 |
+
|
240 |
+
if self.shift_vector is not None:
|
241 |
+
return cond + self.shift_vector
|
242 |
+
else:
|
243 |
+
return cond
|
244 |
+
|
245 |
+
|
246 |
+
def clip_load_untrained(version):
|
247 |
+
assert version == 'ViT-B/16'
|
248 |
+
from clip.model import CLIP
|
249 |
+
from clip.clip import _MODELS, _download
|
250 |
+
model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
|
251 |
+
state_dict = model.state_dict()
|
252 |
+
|
253 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
254 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
255 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
256 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
257 |
+
image_resolution = vision_patch_size * grid_size
|
258 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
259 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
260 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
261 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
262 |
+
transformer_heads = transformer_width // 64
|
263 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
264 |
+
|
265 |
+
return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size,
|
266 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)
|
267 |
+
|
268 |
+
|
269 |
+
class CLIPDensePredT(CLIPDenseBase):
|
270 |
+
|
271 |
+
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
|
272 |
+
extra_blocks=0, reduce_cond=None, fix_shift=False,
|
273 |
+
learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False,
|
274 |
+
add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False):
|
275 |
+
|
276 |
+
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
|
277 |
+
# device = 'cpu'
|
278 |
+
|
279 |
+
self.extract_layers = extract_layers
|
280 |
+
self.cond_layer = cond_layer
|
281 |
+
self.limit_to_clip_only = limit_to_clip_only
|
282 |
+
self.process_cond = None
|
283 |
+
self.rev_activations = rev_activations
|
284 |
+
|
285 |
+
depth = len(extract_layers)
|
286 |
+
|
287 |
+
if add_calibration:
|
288 |
+
self.calibration_conds = 1
|
289 |
+
|
290 |
+
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
|
291 |
+
|
292 |
+
self.add_activation1 = True
|
293 |
+
|
294 |
+
self.version = version
|
295 |
+
|
296 |
+
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
|
297 |
+
|
298 |
+
if fix_shift:
|
299 |
+
# self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
|
300 |
+
self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
|
301 |
+
# self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
|
302 |
+
else:
|
303 |
+
self.shift_vector = None
|
304 |
+
|
305 |
+
if trans_conv is None:
|
306 |
+
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
|
307 |
+
else:
|
308 |
+
# explicitly define transposed conv kernel size
|
309 |
+
trans_conv_ks = (trans_conv, trans_conv)
|
310 |
+
|
311 |
+
if not complex_trans_conv:
|
312 |
+
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
313 |
+
else:
|
314 |
+
assert trans_conv_ks[0] == trans_conv_ks[1]
|
315 |
+
|
316 |
+
tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
|
317 |
+
|
318 |
+
self.trans_conv = nn.Sequential(
|
319 |
+
nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
|
320 |
+
nn.ReLU(),
|
321 |
+
nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]),
|
322 |
+
nn.ReLU(),
|
323 |
+
nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]),
|
324 |
+
)
|
325 |
+
|
326 |
+
# self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
327 |
+
|
328 |
+
assert len(self.extract_layers) == depth
|
329 |
+
|
330 |
+
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
|
331 |
+
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
|
332 |
+
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
|
333 |
+
|
334 |
+
# refinement and trans conv
|
335 |
+
|
336 |
+
if learn_trans_conv_only:
|
337 |
+
for p in self.parameters():
|
338 |
+
p.requires_grad_(False)
|
339 |
+
|
340 |
+
for p in self.trans_conv.parameters():
|
341 |
+
p.requires_grad_(True)
|
342 |
+
|
343 |
+
self.prompt_list = get_prompt_list(prompt)
|
344 |
+
|
345 |
+
|
346 |
+
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
|
347 |
+
|
348 |
+
assert type(return_features) == bool
|
349 |
+
|
350 |
+
inp_image = inp_image.to(self.model.positional_embedding.device)
|
351 |
+
|
352 |
+
if mask is not None:
|
353 |
+
raise ValueError('mask not supported')
|
354 |
+
|
355 |
+
# x_inp = normalize(inp_image)
|
356 |
+
x_inp = inp_image
|
357 |
+
|
358 |
+
bs, dev = inp_image.shape[0], x_inp.device
|
359 |
+
|
360 |
+
cond = self.get_cond_vec(conditional, bs)
|
361 |
+
|
362 |
+
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
|
363 |
+
|
364 |
+
activation1 = activations[0]
|
365 |
+
activations = activations[1:]
|
366 |
+
|
367 |
+
_activations = activations[::-1] if not self.rev_activations else activations
|
368 |
+
|
369 |
+
a = None
|
370 |
+
for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
|
371 |
+
|
372 |
+
if a is not None:
|
373 |
+
a = reduce(activation) + a
|
374 |
+
else:
|
375 |
+
a = reduce(activation)
|
376 |
+
|
377 |
+
if i == self.cond_layer:
|
378 |
+
if self.reduce_cond is not None:
|
379 |
+
cond = self.reduce_cond(cond)
|
380 |
+
|
381 |
+
a = self.film_mul(cond) * a + self.film_add(cond)
|
382 |
+
|
383 |
+
a = block(a)
|
384 |
+
|
385 |
+
for block in self.extra_blocks:
|
386 |
+
a = a + block(a)
|
387 |
+
|
388 |
+
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
389 |
+
|
390 |
+
size = int(math.sqrt(a.shape[2]))
|
391 |
+
|
392 |
+
a = a.view(bs, a.shape[1], size, size)
|
393 |
+
|
394 |
+
a = self.trans_conv(a)
|
395 |
+
|
396 |
+
if self.n_tokens is not None:
|
397 |
+
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True)
|
398 |
+
|
399 |
+
if self.upsample_proj is not None:
|
400 |
+
a = self.upsample_proj(a)
|
401 |
+
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
|
402 |
+
|
403 |
+
if return_features:
|
404 |
+
return a, visual_q, cond, [activation1] + activations
|
405 |
+
else:
|
406 |
+
return a,
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
class CLIPDensePredTMasked(CLIPDensePredT):
|
411 |
+
|
412 |
+
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4,
|
413 |
+
prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False,
|
414 |
+
refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):
|
415 |
+
|
416 |
+
super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim,
|
417 |
+
n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond,
|
418 |
+
fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
|
419 |
+
limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
|
420 |
+
n_tokens=n_tokens)
|
421 |
+
|
422 |
+
def visual_forward_masked(self, img_s, seg_s):
|
423 |
+
return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))
|
424 |
+
|
425 |
+
def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
|
426 |
+
|
427 |
+
if seg_s is None:
|
428 |
+
cond = cond_or_img_s
|
429 |
+
else:
|
430 |
+
img_s = cond_or_img_s
|
431 |
+
|
432 |
+
with torch.no_grad():
|
433 |
+
cond, _, _ = self.visual_forward_masked(img_s, seg_s)
|
434 |
+
|
435 |
+
return super().forward(img_q, cond, return_features=return_features)
|
436 |
+
|
437 |
+
|
438 |
+
|
439 |
+
class CLIPDenseBaseline(CLIPDenseBase):
|
440 |
+
|
441 |
+
def __init__(self, version='ViT-B/32', cond_layer=0,
|
442 |
+
extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed',
|
443 |
+
reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
|
444 |
+
|
445 |
+
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
|
446 |
+
device = 'cpu'
|
447 |
+
|
448 |
+
# self.cond_layer = cond_layer
|
449 |
+
self.extract_layer = extract_layer
|
450 |
+
self.limit_to_clip_only = limit_to_clip_only
|
451 |
+
self.shift_vector = None
|
452 |
+
|
453 |
+
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
|
454 |
+
|
455 |
+
assert reduce2_dim is not None
|
456 |
+
|
457 |
+
self.reduce2 = nn.Sequential(
|
458 |
+
nn.Linear(reduce_dim, reduce2_dim),
|
459 |
+
nn.ReLU(),
|
460 |
+
nn.Linear(reduce2_dim, reduce_dim)
|
461 |
+
)
|
462 |
+
|
463 |
+
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
|
464 |
+
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
465 |
+
|
466 |
+
|
467 |
+
def forward(self, inp_image, conditional=None, return_features=False):
|
468 |
+
|
469 |
+
inp_image = inp_image.to(self.model.positional_embedding.device)
|
470 |
+
|
471 |
+
# x_inp = normalize(inp_image)
|
472 |
+
x_inp = inp_image
|
473 |
+
|
474 |
+
bs, dev = inp_image.shape[0], x_inp.device
|
475 |
+
|
476 |
+
cond = self.get_cond_vec(conditional, bs)
|
477 |
+
|
478 |
+
visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])
|
479 |
+
|
480 |
+
a = activations[0]
|
481 |
+
a = self.reduce(a)
|
482 |
+
a = self.film_mul(cond) * a + self.film_add(cond)
|
483 |
+
|
484 |
+
if self.reduce2 is not None:
|
485 |
+
a = self.reduce2(a)
|
486 |
+
|
487 |
+
# the original model would execute a transformer block here
|
488 |
+
|
489 |
+
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
490 |
+
|
491 |
+
size = int(math.sqrt(a.shape[2]))
|
492 |
+
|
493 |
+
a = a.view(bs, a.shape[1], size, size)
|
494 |
+
a = self.trans_conv(a)
|
495 |
+
|
496 |
+
if return_features:
|
497 |
+
return a, visual_q, cond, activations
|
498 |
+
else:
|
499 |
+
return a,
|
500 |
+
|
501 |
+
|
502 |
+
class CLIPSegMultiLabel(nn.Module):
|
503 |
+
|
504 |
+
def __init__(self, model) -> None:
|
505 |
+
super().__init__()
|
506 |
+
|
507 |
+
from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
|
508 |
+
|
509 |
+
self.pascal_classes = VOC
|
510 |
+
|
511 |
+
from clip.clipseg import CLIPDensePredT
|
512 |
+
from general_utils import load_model
|
513 |
+
# self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
|
514 |
+
self.clipseg = load_model(model, strict=False)
|
515 |
+
|
516 |
+
self.clipseg.eval()
|
517 |
+
|
518 |
+
def forward(self, x):
|
519 |
+
|
520 |
+
bs = x.shape[0]
|
521 |
+
out = torch.ones(21, bs, 352, 352).to(x.device) * -10
|
522 |
+
|
523 |
+
for class_id, class_name in enumerate(self.pascal_classes):
|
524 |
+
|
525 |
+
fac = 3 if class_name == 'background' else 1
|
526 |
+
|
527 |
+
with torch.no_grad():
|
528 |
+
pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac
|
529 |
+
|
530 |
+
out[class_id] += pred
|
531 |
+
|
532 |
+
|
533 |
+
out = out.permute(1, 0, 2, 3)
|
534 |
+
|
535 |
+
return out
|
536 |
+
|
537 |
+
# construct output tensor
|
538 |
+
|
roop-unleashed-main/clip/model.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
self.relu1 = nn.ReLU(inplace=True)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
+
self.relu2 = nn.ReLU(inplace=True)
|
24 |
+
|
25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
+
|
27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
+
self.relu3 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
self.downsample = None
|
32 |
+
self.stride = stride
|
33 |
+
|
34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
37 |
+
("-1", nn.AvgPool2d(stride)),
|
38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
+
]))
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor):
|
43 |
+
identity = x
|
44 |
+
|
45 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
46 |
+
out = self.relu2(self.bn2(self.conv2(out)))
|
47 |
+
out = self.avgpool(out)
|
48 |
+
out = self.bn3(self.conv3(out))
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
identity = self.downsample(x)
|
52 |
+
|
53 |
+
out += identity
|
54 |
+
out = self.relu3(out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
|
58 |
+
class AttentionPool2d(nn.Module):
|
59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
+
super().__init__()
|
61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
+
self.num_heads = num_heads
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
+
x, _ = F.multi_head_attention_forward(
|
73 |
+
query=x[:1], key=x, value=x,
|
74 |
+
embed_dim_to_check=x.shape[-1],
|
75 |
+
num_heads=self.num_heads,
|
76 |
+
q_proj_weight=self.q_proj.weight,
|
77 |
+
k_proj_weight=self.k_proj.weight,
|
78 |
+
v_proj_weight=self.v_proj.weight,
|
79 |
+
in_proj_weight=None,
|
80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
+
bias_k=None,
|
82 |
+
bias_v=None,
|
83 |
+
add_zero_attn=False,
|
84 |
+
dropout_p=0,
|
85 |
+
out_proj_weight=self.c_proj.weight,
|
86 |
+
out_proj_bias=self.c_proj.bias,
|
87 |
+
use_separate_proj_weight=True,
|
88 |
+
training=self.training,
|
89 |
+
need_weights=False
|
90 |
+
)
|
91 |
+
return x.squeeze(0)
|
92 |
+
|
93 |
+
|
94 |
+
class ModifiedResNet(nn.Module):
|
95 |
+
"""
|
96 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
97 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
98 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
99 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
103 |
+
super().__init__()
|
104 |
+
self.output_dim = output_dim
|
105 |
+
self.input_resolution = input_resolution
|
106 |
+
|
107 |
+
# the 3-layer stem
|
108 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
109 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
110 |
+
self.relu1 = nn.ReLU(inplace=True)
|
111 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
112 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
113 |
+
self.relu2 = nn.ReLU(inplace=True)
|
114 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
115 |
+
self.bn3 = nn.BatchNorm2d(width)
|
116 |
+
self.relu3 = nn.ReLU(inplace=True)
|
117 |
+
self.avgpool = nn.AvgPool2d(2)
|
118 |
+
|
119 |
+
# residual layers
|
120 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
121 |
+
self.layer1 = self._make_layer(width, layers[0])
|
122 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
123 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
124 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
125 |
+
|
126 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
127 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
128 |
+
|
129 |
+
def _make_layer(self, planes, blocks, stride=1):
|
130 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
131 |
+
|
132 |
+
self._inplanes = planes * Bottleneck.expansion
|
133 |
+
for _ in range(1, blocks):
|
134 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
135 |
+
|
136 |
+
return nn.Sequential(*layers)
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
def stem(x):
|
140 |
+
x = self.relu1(self.bn1(self.conv1(x)))
|
141 |
+
x = self.relu2(self.bn2(self.conv2(x)))
|
142 |
+
x = self.relu3(self.bn3(self.conv3(x)))
|
143 |
+
x = self.avgpool(x)
|
144 |
+
return x
|
145 |
+
|
146 |
+
x = x.type(self.conv1.weight.dtype)
|
147 |
+
x = stem(x)
|
148 |
+
x = self.layer1(x)
|
149 |
+
x = self.layer2(x)
|
150 |
+
x = self.layer3(x)
|
151 |
+
x = self.layer4(x)
|
152 |
+
x = self.attnpool(x)
|
153 |
+
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class LayerNorm(nn.LayerNorm):
|
158 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
159 |
+
|
160 |
+
def forward(self, x: torch.Tensor):
|
161 |
+
orig_type = x.dtype
|
162 |
+
ret = super().forward(x.type(torch.float32))
|
163 |
+
return ret.type(orig_type)
|
164 |
+
|
165 |
+
|
166 |
+
class QuickGELU(nn.Module):
|
167 |
+
def forward(self, x: torch.Tensor):
|
168 |
+
return x * torch.sigmoid(1.702 * x)
|
169 |
+
|
170 |
+
|
171 |
+
class ResidualAttentionBlock(nn.Module):
|
172 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
176 |
+
self.ln_1 = LayerNorm(d_model)
|
177 |
+
self.mlp = nn.Sequential(OrderedDict([
|
178 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
179 |
+
("gelu", QuickGELU()),
|
180 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
181 |
+
]))
|
182 |
+
self.ln_2 = LayerNorm(d_model)
|
183 |
+
self.attn_mask = attn_mask
|
184 |
+
|
185 |
+
def attention(self, x: torch.Tensor):
|
186 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
187 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
188 |
+
|
189 |
+
def forward(self, x: torch.Tensor):
|
190 |
+
x = x + self.attention(self.ln_1(x))
|
191 |
+
x = x + self.mlp(self.ln_2(x))
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class Transformer(nn.Module):
|
196 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
197 |
+
super().__init__()
|
198 |
+
self.width = width
|
199 |
+
self.layers = layers
|
200 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
201 |
+
|
202 |
+
def forward(self, x: torch.Tensor):
|
203 |
+
return self.resblocks(x)
|
204 |
+
|
205 |
+
|
206 |
+
class VisionTransformer(nn.Module):
|
207 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
208 |
+
super().__init__()
|
209 |
+
self.input_resolution = input_resolution
|
210 |
+
self.output_dim = output_dim
|
211 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
212 |
+
|
213 |
+
scale = width ** -0.5
|
214 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
215 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
216 |
+
self.ln_pre = LayerNorm(width)
|
217 |
+
|
218 |
+
self.transformer = Transformer(width, layers, heads)
|
219 |
+
|
220 |
+
self.ln_post = LayerNorm(width)
|
221 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
222 |
+
|
223 |
+
def forward(self, x: torch.Tensor):
|
224 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
225 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
226 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
227 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
228 |
+
x = x + self.positional_embedding.to(x.dtype)
|
229 |
+
x = self.ln_pre(x)
|
230 |
+
|
231 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
232 |
+
x = self.transformer(x)
|
233 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
234 |
+
|
235 |
+
x = self.ln_post(x[:, 0, :])
|
236 |
+
|
237 |
+
if self.proj is not None:
|
238 |
+
x = x @ self.proj
|
239 |
+
|
240 |
+
return x
|
241 |
+
|
242 |
+
|
243 |
+
class CLIP(nn.Module):
|
244 |
+
def __init__(self,
|
245 |
+
embed_dim: int,
|
246 |
+
# vision
|
247 |
+
image_resolution: int,
|
248 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
249 |
+
vision_width: int,
|
250 |
+
vision_patch_size: int,
|
251 |
+
# text
|
252 |
+
context_length: int,
|
253 |
+
vocab_size: int,
|
254 |
+
transformer_width: int,
|
255 |
+
transformer_heads: int,
|
256 |
+
transformer_layers: int
|
257 |
+
):
|
258 |
+
super().__init__()
|
259 |
+
|
260 |
+
self.context_length = context_length
|
261 |
+
|
262 |
+
if isinstance(vision_layers, (tuple, list)):
|
263 |
+
vision_heads = vision_width * 32 // 64
|
264 |
+
self.visual = ModifiedResNet(
|
265 |
+
layers=vision_layers,
|
266 |
+
output_dim=embed_dim,
|
267 |
+
heads=vision_heads,
|
268 |
+
input_resolution=image_resolution,
|
269 |
+
width=vision_width
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
vision_heads = vision_width // 64
|
273 |
+
self.visual = VisionTransformer(
|
274 |
+
input_resolution=image_resolution,
|
275 |
+
patch_size=vision_patch_size,
|
276 |
+
width=vision_width,
|
277 |
+
layers=vision_layers,
|
278 |
+
heads=vision_heads,
|
279 |
+
output_dim=embed_dim
|
280 |
+
)
|
281 |
+
|
282 |
+
self.transformer = Transformer(
|
283 |
+
width=transformer_width,
|
284 |
+
layers=transformer_layers,
|
285 |
+
heads=transformer_heads,
|
286 |
+
attn_mask=self.build_attention_mask()
|
287 |
+
)
|
288 |
+
|
289 |
+
self.vocab_size = vocab_size
|
290 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
291 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
292 |
+
self.ln_final = LayerNorm(transformer_width)
|
293 |
+
|
294 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
295 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
296 |
+
|
297 |
+
self.initialize_parameters()
|
298 |
+
|
299 |
+
def initialize_parameters(self):
|
300 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
301 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
302 |
+
|
303 |
+
if isinstance(self.visual, ModifiedResNet):
|
304 |
+
if self.visual.attnpool is not None:
|
305 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
306 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
307 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
308 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
309 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
310 |
+
|
311 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
312 |
+
for name, param in resnet_block.named_parameters():
|
313 |
+
if name.endswith("bn3.weight"):
|
314 |
+
nn.init.zeros_(param)
|
315 |
+
|
316 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
317 |
+
attn_std = self.transformer.width ** -0.5
|
318 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
319 |
+
for block in self.transformer.resblocks:
|
320 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
321 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
322 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
323 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
324 |
+
|
325 |
+
if self.text_projection is not None:
|
326 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
327 |
+
|
328 |
+
def build_attention_mask(self):
|
329 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
330 |
+
# pytorch uses additive attention mask; fill with -inf
|
331 |
+
mask = torch.empty(self.context_length, self.context_length)
|
332 |
+
mask.fill_(float("-inf"))
|
333 |
+
mask.triu_(1) # zero out the lower diagonal
|
334 |
+
return mask
|
335 |
+
|
336 |
+
@property
|
337 |
+
def dtype(self):
|
338 |
+
return self.visual.conv1.weight.dtype
|
339 |
+
|
340 |
+
def encode_image(self, image):
|
341 |
+
return self.visual(image.type(self.dtype))
|
342 |
+
|
343 |
+
def encode_text(self, text):
|
344 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
345 |
+
|
346 |
+
x = x + self.positional_embedding.type(self.dtype)
|
347 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
348 |
+
x = self.transformer(x)
|
349 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
350 |
+
x = self.ln_final(x).type(self.dtype)
|
351 |
+
|
352 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
353 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
354 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
355 |
+
|
356 |
+
return x
|
357 |
+
|
358 |
+
def forward(self, image, text):
|
359 |
+
image_features = self.encode_image(image)
|
360 |
+
text_features = self.encode_text(text)
|
361 |
+
|
362 |
+
# normalized features
|
363 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
364 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
365 |
+
|
366 |
+
# cosine similarity as logits
|
367 |
+
logit_scale = self.logit_scale.exp()
|
368 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
369 |
+
logits_per_text = logits_per_image.t()
|
370 |
+
|
371 |
+
# shape = [global_batch_size, global_batch_size]
|
372 |
+
return logits_per_image, logits_per_text
|
373 |
+
|
374 |
+
|
375 |
+
def convert_weights(model: nn.Module):
|
376 |
+
"""Convert applicable model parameters to fp16"""
|
377 |
+
|
378 |
+
def _convert_weights_to_fp16(l):
|
379 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
380 |
+
l.weight.data = l.weight.data.half()
|
381 |
+
if l.bias is not None:
|
382 |
+
l.bias.data = l.bias.data.half()
|
383 |
+
|
384 |
+
if isinstance(l, nn.MultiheadAttention):
|
385 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
386 |
+
tensor = getattr(l, attr)
|
387 |
+
if tensor is not None:
|
388 |
+
tensor.data = tensor.data.half()
|
389 |
+
|
390 |
+
for name in ["text_projection", "proj"]:
|
391 |
+
if hasattr(l, name):
|
392 |
+
attr = getattr(l, name)
|
393 |
+
if attr is not None:
|
394 |
+
attr.data = attr.data.half()
|
395 |
+
|
396 |
+
model.apply(_convert_weights_to_fp16)
|
397 |
+
|
398 |
+
|
399 |
+
def build_model(state_dict: dict):
|
400 |
+
vit = "visual.proj" in state_dict
|
401 |
+
|
402 |
+
if vit:
|
403 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
404 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
405 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
406 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
407 |
+
image_resolution = vision_patch_size * grid_size
|
408 |
+
else:
|
409 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
410 |
+
vision_layers = tuple(counts)
|
411 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
412 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
413 |
+
vision_patch_size = None
|
414 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
415 |
+
image_resolution = output_width * 32
|
416 |
+
|
417 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
418 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
419 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
420 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
421 |
+
transformer_heads = transformer_width // 64
|
422 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
|
423 |
+
|
424 |
+
model = CLIP(
|
425 |
+
embed_dim,
|
426 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
427 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
428 |
+
)
|
429 |
+
|
430 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
431 |
+
if key in state_dict:
|
432 |
+
del state_dict[key]
|
433 |
+
|
434 |
+
convert_weights(model)
|
435 |
+
model.load_state_dict(state_dict)
|
436 |
+
return model.eval()
|
roop-unleashed-main/clip/simple_tokenizer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
79 |
+
|
80 |
+
def bpe(self, token):
|
81 |
+
if token in self.cache:
|
82 |
+
return self.cache[token]
|
83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
84 |
+
pairs = get_pairs(word)
|
85 |
+
|
86 |
+
if not pairs:
|
87 |
+
return token+'</w>'
|
88 |
+
|
89 |
+
while True:
|
90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
91 |
+
if bigram not in self.bpe_ranks:
|
92 |
+
break
|
93 |
+
first, second = bigram
|
94 |
+
new_word = []
|
95 |
+
i = 0
|
96 |
+
while i < len(word):
|
97 |
+
try:
|
98 |
+
j = word.index(first, i)
|
99 |
+
new_word.extend(word[i:j])
|
100 |
+
i = j
|
101 |
+
except:
|
102 |
+
new_word.extend(word[i:])
|
103 |
+
break
|
104 |
+
|
105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
106 |
+
new_word.append(first+second)
|
107 |
+
i += 2
|
108 |
+
else:
|
109 |
+
new_word.append(word[i])
|
110 |
+
i += 1
|
111 |
+
new_word = tuple(new_word)
|
112 |
+
word = new_word
|
113 |
+
if len(word) == 1:
|
114 |
+
break
|
115 |
+
else:
|
116 |
+
pairs = get_pairs(word)
|
117 |
+
word = ' '.join(word)
|
118 |
+
self.cache[token] = word
|
119 |
+
return word
|
120 |
+
|
121 |
+
def encode(self, text):
|
122 |
+
bpe_tokens = []
|
123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
124 |
+
for token in re.findall(self.pat, text):
|
125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
127 |
+
return bpe_tokens
|
128 |
+
|
129 |
+
def decode(self, tokens):
|
130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
132 |
+
return text
|
roop-unleashed-main/clip/vitseg.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from posixpath import basename, dirname, join
|
3 |
+
# import clip
|
4 |
+
from clip.model import convert_weights
|
5 |
+
import torch
|
6 |
+
import json
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as nnf
|
9 |
+
from torch.nn.modules import activation
|
10 |
+
from torch.nn.modules.activation import ReLU
|
11 |
+
from torchvision import transforms
|
12 |
+
|
13 |
+
normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
14 |
+
|
15 |
+
from torchvision.models import ResNet
|
16 |
+
|
17 |
+
|
18 |
+
def process_prompts(conditional, prompt_list, conditional_map):
|
19 |
+
# DEPRECATED
|
20 |
+
|
21 |
+
# randomly sample a synonym
|
22 |
+
words = [conditional_map[int(i)] for i in conditional]
|
23 |
+
words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words]
|
24 |
+
words = [w.replace('_', ' ') for w in words]
|
25 |
+
|
26 |
+
if prompt_list is not None:
|
27 |
+
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
|
28 |
+
prompts = [prompt_list[i] for i in prompt_indices]
|
29 |
+
else:
|
30 |
+
prompts = ['a photo of {}'] * (len(words))
|
31 |
+
|
32 |
+
return [promt.format(w) for promt, w in zip(prompts, words)]
|
33 |
+
|
34 |
+
|
35 |
+
class VITDenseBase(nn.Module):
|
36 |
+
|
37 |
+
def rescaled_pos_emb(self, new_size):
|
38 |
+
assert len(new_size) == 2
|
39 |
+
|
40 |
+
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
|
41 |
+
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
|
42 |
+
return torch.cat([self.model.positional_embedding[:1], b])
|
43 |
+
|
44 |
+
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
|
48 |
+
x_inp = nnf.interpolate(x_inp, (384, 384))
|
49 |
+
|
50 |
+
x = self.model.patch_embed(x_inp)
|
51 |
+
cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
52 |
+
if self.model.dist_token is None:
|
53 |
+
x = torch.cat((cls_token, x), dim=1)
|
54 |
+
else:
|
55 |
+
x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
|
56 |
+
x = self.model.pos_drop(x + self.model.pos_embed)
|
57 |
+
|
58 |
+
activations = []
|
59 |
+
for i, block in enumerate(self.model.blocks):
|
60 |
+
x = block(x)
|
61 |
+
|
62 |
+
if i in extract_layers:
|
63 |
+
# permute to be compatible with CLIP
|
64 |
+
activations += [x.permute(1,0,2)]
|
65 |
+
|
66 |
+
x = self.model.norm(x)
|
67 |
+
x = self.model.head(self.model.pre_logits(x[:, 0]))
|
68 |
+
|
69 |
+
# again for CLIP compatibility
|
70 |
+
# x = x.permute(1, 0, 2)
|
71 |
+
|
72 |
+
return x, activations, None
|
73 |
+
|
74 |
+
def sample_prompts(self, words, prompt_list=None):
|
75 |
+
|
76 |
+
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
|
77 |
+
|
78 |
+
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
|
79 |
+
prompts = [prompt_list[i] for i in prompt_indices]
|
80 |
+
return [promt.format(w) for promt, w in zip(prompts, words)]
|
81 |
+
|
82 |
+
def get_cond_vec(self, conditional, batch_size):
|
83 |
+
# compute conditional from a single string
|
84 |
+
if conditional is not None and type(conditional) == str:
|
85 |
+
cond = self.compute_conditional(conditional)
|
86 |
+
cond = cond.repeat(batch_size, 1)
|
87 |
+
|
88 |
+
# compute conditional from string list/tuple
|
89 |
+
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
|
90 |
+
assert len(conditional) == batch_size
|
91 |
+
cond = self.compute_conditional(conditional)
|
92 |
+
|
93 |
+
# use conditional directly
|
94 |
+
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
|
95 |
+
cond = conditional
|
96 |
+
|
97 |
+
# compute conditional from image
|
98 |
+
elif conditional is not None and type(conditional) == torch.Tensor:
|
99 |
+
with torch.no_grad():
|
100 |
+
cond, _, _ = self.visual_forward(conditional)
|
101 |
+
else:
|
102 |
+
raise ValueError('invalid conditional')
|
103 |
+
return cond
|
104 |
+
|
105 |
+
def compute_conditional(self, conditional):
|
106 |
+
import clip
|
107 |
+
|
108 |
+
dev = next(self.parameters()).device
|
109 |
+
|
110 |
+
if type(conditional) in {list, tuple}:
|
111 |
+
text_tokens = clip.tokenize(conditional).to(dev)
|
112 |
+
cond = self.clip_model.encode_text(text_tokens)
|
113 |
+
else:
|
114 |
+
if conditional in self.precomputed_prompts:
|
115 |
+
cond = self.precomputed_prompts[conditional].float().to(dev)
|
116 |
+
else:
|
117 |
+
text_tokens = clip.tokenize([conditional]).to(dev)
|
118 |
+
cond = self.clip_model.encode_text(text_tokens)[0]
|
119 |
+
|
120 |
+
return cond
|
121 |
+
|
122 |
+
|
123 |
+
class VITDensePredT(VITDenseBase):
|
124 |
+
|
125 |
+
def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
|
126 |
+
depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False,
|
127 |
+
learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False,
|
128 |
+
add_calibration=False, process_cond=None, not_pretrained=False):
|
129 |
+
super().__init__()
|
130 |
+
# device = 'cpu'
|
131 |
+
|
132 |
+
self.extract_layers = extract_layers
|
133 |
+
self.cond_layer = cond_layer
|
134 |
+
self.limit_to_clip_only = limit_to_clip_only
|
135 |
+
self.process_cond = None
|
136 |
+
|
137 |
+
if add_calibration:
|
138 |
+
self.calibration_conds = 1
|
139 |
+
|
140 |
+
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
|
141 |
+
|
142 |
+
self.add_activation1 = True
|
143 |
+
|
144 |
+
import timm
|
145 |
+
self.model = timm.create_model('vit_base_patch16_384', pretrained=True)
|
146 |
+
self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond)
|
147 |
+
|
148 |
+
for p in self.model.parameters():
|
149 |
+
p.requires_grad_(False)
|
150 |
+
|
151 |
+
import clip
|
152 |
+
self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False)
|
153 |
+
# del self.clip_model.visual
|
154 |
+
|
155 |
+
|
156 |
+
self.token_shape = (14, 14)
|
157 |
+
|
158 |
+
# conditional
|
159 |
+
if reduce_cond is not None:
|
160 |
+
self.reduce_cond = nn.Linear(512, reduce_cond)
|
161 |
+
for p in self.reduce_cond.parameters():
|
162 |
+
p.requires_grad_(False)
|
163 |
+
else:
|
164 |
+
self.reduce_cond = None
|
165 |
+
|
166 |
+
# self.film = AVAILABLE_BLOCKS['film'](512, 128)
|
167 |
+
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
168 |
+
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
169 |
+
|
170 |
+
# DEPRECATED
|
171 |
+
# self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))}
|
172 |
+
|
173 |
+
assert len(self.extract_layers) == depth
|
174 |
+
|
175 |
+
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
|
176 |
+
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
|
177 |
+
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
|
178 |
+
|
179 |
+
trans_conv_ks = (16, 16)
|
180 |
+
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
181 |
+
|
182 |
+
# refinement and trans conv
|
183 |
+
|
184 |
+
if learn_trans_conv_only:
|
185 |
+
for p in self.parameters():
|
186 |
+
p.requires_grad_(False)
|
187 |
+
|
188 |
+
for p in self.trans_conv.parameters():
|
189 |
+
p.requires_grad_(True)
|
190 |
+
|
191 |
+
if prompt == 'fixed':
|
192 |
+
self.prompt_list = ['a photo of a {}.']
|
193 |
+
elif prompt == 'shuffle':
|
194 |
+
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
|
195 |
+
elif prompt == 'shuffle+':
|
196 |
+
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
|
197 |
+
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
|
198 |
+
'a bad photo of a {}.', 'a photo of the {}.']
|
199 |
+
elif prompt == 'shuffle_clip':
|
200 |
+
from models.clip_prompts import imagenet_templates
|
201 |
+
self.prompt_list = imagenet_templates
|
202 |
+
|
203 |
+
if process_cond is not None:
|
204 |
+
if process_cond == 'clamp' or process_cond[0] == 'clamp':
|
205 |
+
|
206 |
+
val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2
|
207 |
+
|
208 |
+
def clamp_vec(x):
|
209 |
+
return torch.clamp(x, -val, val)
|
210 |
+
|
211 |
+
self.process_cond = clamp_vec
|
212 |
+
|
213 |
+
elif process_cond.endswith('.pth'):
|
214 |
+
|
215 |
+
shift = torch.load(process_cond)
|
216 |
+
def add_shift(x):
|
217 |
+
return x + shift.to(x.device)
|
218 |
+
|
219 |
+
self.process_cond = add_shift
|
220 |
+
|
221 |
+
import pickle
|
222 |
+
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
|
223 |
+
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
|
224 |
+
|
225 |
+
|
226 |
+
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
|
227 |
+
|
228 |
+
assert type(return_features) == bool
|
229 |
+
|
230 |
+
# inp_image = inp_image.to(self.model.positional_embedding.device)
|
231 |
+
|
232 |
+
if mask is not None:
|
233 |
+
raise ValueError('mask not supported')
|
234 |
+
|
235 |
+
# x_inp = normalize(inp_image)
|
236 |
+
x_inp = inp_image
|
237 |
+
|
238 |
+
bs, dev = inp_image.shape[0], x_inp.device
|
239 |
+
|
240 |
+
inp_image_size = inp_image.shape[2:]
|
241 |
+
|
242 |
+
cond = self.get_cond_vec(conditional, bs)
|
243 |
+
|
244 |
+
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
|
245 |
+
|
246 |
+
activation1 = activations[0]
|
247 |
+
activations = activations[1:]
|
248 |
+
|
249 |
+
a = None
|
250 |
+
for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)):
|
251 |
+
|
252 |
+
if a is not None:
|
253 |
+
a = reduce(activation) + a
|
254 |
+
else:
|
255 |
+
a = reduce(activation)
|
256 |
+
|
257 |
+
if i == self.cond_layer:
|
258 |
+
if self.reduce_cond is not None:
|
259 |
+
cond = self.reduce_cond(cond)
|
260 |
+
|
261 |
+
a = self.film_mul(cond) * a + self.film_add(cond)
|
262 |
+
|
263 |
+
a = block(a)
|
264 |
+
|
265 |
+
for block in self.extra_blocks:
|
266 |
+
a = a + block(a)
|
267 |
+
|
268 |
+
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
269 |
+
|
270 |
+
size = int(math.sqrt(a.shape[2]))
|
271 |
+
|
272 |
+
a = a.view(bs, a.shape[1], size, size)
|
273 |
+
|
274 |
+
if self.trans_conv is not None:
|
275 |
+
a = self.trans_conv(a)
|
276 |
+
|
277 |
+
if self.upsample_proj is not None:
|
278 |
+
a = self.upsample_proj(a)
|
279 |
+
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
|
280 |
+
|
281 |
+
a = nnf.interpolate(a, inp_image_size)
|
282 |
+
|
283 |
+
if return_features:
|
284 |
+
return a, visual_q, cond, [activation1] + activations
|
285 |
+
else:
|
286 |
+
return a,
|
roop-unleashed-main/config_colab.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
clear_output: true
|
2 |
+
force_cpu: false
|
3 |
+
max_threads: 3
|
4 |
+
memory_limit: 0
|
5 |
+
output_image_format: png
|
6 |
+
output_template: '{file}_{time}'
|
7 |
+
output_video_codec: libx264
|
8 |
+
output_video_format: mp4
|
9 |
+
provider: cuda
|
10 |
+
selected_theme: Default
|
11 |
+
server_name: ''
|
12 |
+
server_port: 0
|
13 |
+
server_share: true
|
14 |
+
video_quality: 14
|
roop-unleashed-main/docs/screenshot.png
ADDED
Git LFS Details
|
roop-unleashed-main/installer/installer.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import site
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
|
9 |
+
|
10 |
+
script_dir = os.getcwd()
|
11 |
+
|
12 |
+
|
13 |
+
def run_cmd(cmd, capture_output=False, env=None):
|
14 |
+
# Run shell commands
|
15 |
+
return subprocess.run(cmd, shell=True, capture_output=capture_output, env=env)
|
16 |
+
|
17 |
+
|
18 |
+
def check_env():
|
19 |
+
# If we have access to conda, we are probably in an environment
|
20 |
+
conda_not_exist = run_cmd("conda", capture_output=True).returncode
|
21 |
+
if conda_not_exist:
|
22 |
+
print("Conda is not installed. Exiting...")
|
23 |
+
sys.exit()
|
24 |
+
|
25 |
+
# Ensure this is a new environment and not the base environment
|
26 |
+
if os.environ["CONDA_DEFAULT_ENV"] == "base":
|
27 |
+
print("Create an environment for this project and activate it. Exiting...")
|
28 |
+
sys.exit()
|
29 |
+
|
30 |
+
|
31 |
+
def install_dependencies():
|
32 |
+
global MY_PATH
|
33 |
+
|
34 |
+
# Install Git and clone repo
|
35 |
+
run_cmd("conda install -y -k git")
|
36 |
+
run_cmd("git clone https://github.com/C0untFloyd/roop-unleashed.git")
|
37 |
+
os.chdir(MY_PATH)
|
38 |
+
run_cmd("git checkout 5bfafdc97a0c47b46ec83e6530a57399aaad75d7")
|
39 |
+
# Installs dependencies from requirements.txt
|
40 |
+
run_cmd("python -m pip install -r requirements.txt")
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def update_dependencies():
|
45 |
+
global MY_PATH
|
46 |
+
|
47 |
+
os.chdir(MY_PATH)
|
48 |
+
# do a hard reset for to update even if there are local changes
|
49 |
+
run_cmd("git fetch --all")
|
50 |
+
run_cmd("git reset --hard origin/main")
|
51 |
+
run_cmd("git pull")
|
52 |
+
# Installs/Updates dependencies from all requirements.txt
|
53 |
+
run_cmd("python -m pip install -r requirements.txt")
|
54 |
+
|
55 |
+
|
56 |
+
def start_app():
|
57 |
+
global MY_PATH
|
58 |
+
|
59 |
+
os.chdir(MY_PATH)
|
60 |
+
# forward commandline arguments
|
61 |
+
sys.argv.pop(0)
|
62 |
+
args = ' '.join(sys.argv)
|
63 |
+
print("Launching App")
|
64 |
+
run_cmd(f'python run.py {args}')
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
global MY_PATH
|
69 |
+
|
70 |
+
MY_PATH = "roop-unleashed"
|
71 |
+
|
72 |
+
|
73 |
+
# Verifies we are in a conda environment
|
74 |
+
check_env()
|
75 |
+
|
76 |
+
# If webui has already been installed, skip and run
|
77 |
+
if not os.path.exists(MY_PATH):
|
78 |
+
install_dependencies()
|
79 |
+
else:
|
80 |
+
# moved update from batch to here, because of batch limitations
|
81 |
+
updatechoice = input("Check for Updates? [y/n]").lower()
|
82 |
+
if updatechoice == "y":
|
83 |
+
update_dependencies()
|
84 |
+
|
85 |
+
# Run the model with webui
|
86 |
+
os.chdir(script_dir)
|
87 |
+
start_app()
|
roop-unleashed-main/installer/macOSinstaller.sh
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# This script checks and installs all dependencies which are needed to run roop-unleashed. After that, it clones the repo.
|
4 |
+
# Execute this easily with /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/PJF16/roop-unleashed/master/installer/macOSinstaller.sh)
|
5 |
+
|
6 |
+
# Function to check if a command exists
|
7 |
+
command_exists() {
|
8 |
+
command -v "$1" >/dev/null 2>&1
|
9 |
+
}
|
10 |
+
|
11 |
+
echo "Starting check and installation process of dependencies for roop-unleashed"
|
12 |
+
|
13 |
+
# Check if Homebrew is installed
|
14 |
+
if ! command_exists brew; then
|
15 |
+
echo "Homebrew is not installed. Starting installation..."
|
16 |
+
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
|
17 |
+
else
|
18 |
+
echo "Homebrew is already installed."
|
19 |
+
fi
|
20 |
+
|
21 |
+
# Update Homebrew
|
22 |
+
echo "Updating Homebrew..."
|
23 |
+
brew update
|
24 |
+
|
25 |
+
# Check if Python 3.11 is installed
|
26 |
+
if brew list --versions [email protected] >/dev/null; then
|
27 |
+
echo "Python 3.11 is already installed."
|
28 |
+
else
|
29 |
+
echo "Python 3.11 is not installed. Installing it now..."
|
30 |
+
brew install [email protected]
|
31 |
+
fi
|
32 |
+
|
33 |
+
# Check if [email protected] is installed
|
34 |
+
if brew list --versions [email protected] >/dev/null; then
|
35 |
+
echo "[email protected] is already installed."
|
36 |
+
else
|
37 |
+
echo "[email protected] is not installed. Installing it now..."
|
38 |
+
brew install [email protected]
|
39 |
+
fi
|
40 |
+
|
41 |
+
# Check if ffmpeg is installed
|
42 |
+
if command_exists ffmpeg; then
|
43 |
+
echo "ffmpeg is already installed."
|
44 |
+
else
|
45 |
+
echo "ffmpeg is not installed. Installing it now..."
|
46 |
+
brew install ffmpeg
|
47 |
+
fi
|
48 |
+
|
49 |
+
# Check if git is installed
|
50 |
+
if command_exists git; then
|
51 |
+
echo "git is already installed."
|
52 |
+
else
|
53 |
+
echo "git is not installed. Installing it now..."
|
54 |
+
brew install git
|
55 |
+
fi
|
56 |
+
|
57 |
+
# Clone the repository
|
58 |
+
REPO_URL="https://github.com/C0untFloyd/roop-unleashed.git"
|
59 |
+
REPO_NAME="roop-unleashed"
|
60 |
+
|
61 |
+
echo "Cloning the repository $REPO_URL..."
|
62 |
+
git clone $REPO_URL
|
63 |
+
|
64 |
+
# Check if the repository was cloned successfully
|
65 |
+
if [ -d "$REPO_NAME" ]; then
|
66 |
+
echo "Repository cloned successfully. Changing into directory $REPO_NAME..."
|
67 |
+
cd "$REPO_NAME"
|
68 |
+
else
|
69 |
+
echo "Failed to clone the repository."
|
70 |
+
fi
|
71 |
+
|
72 |
+
echo "Check and installation process completed."
|
73 |
+
|
roop-unleashed-main/installer/windows_run.bat
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
|
3 |
+
REM No CLI arguments supported anymore
|
4 |
+
set COMMANDLINE_ARGS=
|
5 |
+
|
6 |
+
cd /D "%~dp0"
|
7 |
+
|
8 |
+
echo "%CD%"| findstr /C:" " >nul && echo This script relies on Miniconda which can not be silently installed under a path with spaces. && goto end
|
9 |
+
|
10 |
+
set PATH=%PATH%;%SystemRoot%\system32
|
11 |
+
|
12 |
+
@rem config
|
13 |
+
set INSTALL_DIR=%cd%\installer_files
|
14 |
+
set CONDA_ROOT_PREFIX=%cd%\installer_files\conda
|
15 |
+
set INSTALL_ENV_DIR=%cd%\installer_files\env
|
16 |
+
set MINICONDA_DOWNLOAD_URL=https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
|
17 |
+
set FFMPEG_DOWNLOAD_URL=https://github.com/GyanD/codexffmpeg/releases/download/7.1/ffmpeg-7.1-essentials_build.zip
|
18 |
+
set INSTALL_FFMPEG_DIR=%cd%\installer_files\ffmpeg
|
19 |
+
set INSIGHTFACE_PACKAGE_URL=https://github.com/C0untFloyd/roop-unleashed/releases/download/3.6.6/insightface-0.7.3-cp310-cp310-win_amd64.whl
|
20 |
+
set INSIGHTFACE_PACKAGE_PATH=%INSTALL_DIR%\insightface-0.7.3-cp310-cp310-win_amd64.whl
|
21 |
+
|
22 |
+
set conda_exists=F
|
23 |
+
set ffmpeg_exists=F
|
24 |
+
|
25 |
+
@rem figure out whether git and conda needs to be installed
|
26 |
+
call "%CONDA_ROOT_PREFIX%\_conda.exe" --version >nul 2>&1
|
27 |
+
if "%ERRORLEVEL%" EQU "0" set conda_exists=T
|
28 |
+
|
29 |
+
@rem Check if FFmpeg is already in PATH
|
30 |
+
where ffmpeg >nul 2>&1
|
31 |
+
if "%ERRORLEVEL%" EQU "0" (
|
32 |
+
echo FFmpeg is already installed.
|
33 |
+
set ffmpeg_exists=T
|
34 |
+
)
|
35 |
+
|
36 |
+
@rem (if necessary) install git and conda into a contained environment
|
37 |
+
|
38 |
+
@rem download conda
|
39 |
+
if "%conda_exists%" == "F" (
|
40 |
+
echo Downloading Miniconda from %MINICONDA_DOWNLOAD_URL% to %INSTALL_DIR%\miniconda_installer.exe
|
41 |
+
mkdir "%INSTALL_DIR%"
|
42 |
+
call curl -Lk "%MINICONDA_DOWNLOAD_URL%" > "%INSTALL_DIR%\miniconda_installer.exe" || ( echo. && echo Miniconda failed to download. && goto end )
|
43 |
+
echo Installing Miniconda to %CONDA_ROOT_PREFIX%
|
44 |
+
start /wait "" "%INSTALL_DIR%\miniconda_installer.exe" /InstallationType=JustMe /NoShortcuts=1 /AddToPath=0 /RegisterPython=0 /NoRegistry=1 /S /D=%CONDA_ROOT_PREFIX%
|
45 |
+
|
46 |
+
@rem test the conda binary
|
47 |
+
echo Miniconda version:
|
48 |
+
call "%CONDA_ROOT_PREFIX%\_conda.exe" --version || ( echo. && echo Miniconda not found. && goto end )
|
49 |
+
)
|
50 |
+
|
51 |
+
@rem create the installer env
|
52 |
+
if not exist "%INSTALL_ENV_DIR%" (
|
53 |
+
echo Creating Conda Environment
|
54 |
+
call "%CONDA_ROOT_PREFIX%\_conda.exe" create --no-shortcuts -y -k --prefix "%INSTALL_ENV_DIR%" python=3.10 || ( echo. && echo ERROR: Conda environment creation failed. && goto end )
|
55 |
+
@rem check if conda environment was actually created
|
56 |
+
if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end )
|
57 |
+
@rem activate installer env
|
58 |
+
call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo ERROR: Miniconda hook not found. && goto end )
|
59 |
+
@rem Download insightface package
|
60 |
+
echo Downloading insightface package from %INSIGHTFACE_PACKAGE_URL% to %INSIGHTFACE_PACKAGE_PATH%
|
61 |
+
call curl -Lk "%INSIGHTFACE_PACKAGE_URL%" > "%INSIGHTFACE_PACKAGE_PATH%" || ( echo. && echo ERROR: Insightface package failed to download. && goto end )
|
62 |
+
@rem install insightface package using pip
|
63 |
+
echo Installing insightface package
|
64 |
+
call pip install "%INSIGHTFACE_PACKAGE_PATH%" || ( echo. && echo ERROR: Insightface package installation failed. && goto end )
|
65 |
+
)
|
66 |
+
|
67 |
+
@rem Download and install FFmpeg if not already installed
|
68 |
+
if "%ffmpeg_exists%" == "F" (
|
69 |
+
if not exist "%INSTALL_FFMPEG_DIR%" (
|
70 |
+
echo Downloading ffmpeg from %FFMPEG_DOWNLOAD_URL% to %INSTALL_DIR%
|
71 |
+
call curl -Lk "%FFMPEG_DOWNLOAD_URL%" > "%INSTALL_DIR%\ffmpeg.zip" || ( echo. && echo ffmpeg failed to download. && goto end )
|
72 |
+
call powershell -command "Expand-Archive -Force '%INSTALL_DIR%\ffmpeg.zip' '%INSTALL_DIR%\'"
|
73 |
+
cd "%INSTALL_DIR%"
|
74 |
+
move ffmpeg-* ffmpeg
|
75 |
+
setx PATH "%INSTALL_FFMPEG_DIR%\bin\;%PATH%"
|
76 |
+
echo To use videos, you need to restart roop after this installation.
|
77 |
+
cd ..
|
78 |
+
)
|
79 |
+
) else (
|
80 |
+
echo Skipping FFmpeg installation as it is already available.
|
81 |
+
)
|
82 |
+
|
83 |
+
@rem setup installer env
|
84 |
+
@rem check if conda environment was actually created
|
85 |
+
if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end )
|
86 |
+
@rem activate installer env
|
87 |
+
call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo ERROR: Miniconda hook not found. && goto end )
|
88 |
+
echo Launching roop unleashed
|
89 |
+
call python installer.py %COMMANDLINE_ARGS%
|
90 |
+
|
91 |
+
echo.
|
92 |
+
echo Done!
|
93 |
+
|
94 |
+
:end
|
95 |
+
pause
|
roop-unleashed-main/mypy.ini
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[mypy]
|
2 |
+
check_untyped_defs = True
|
3 |
+
disallow_any_generics = True
|
4 |
+
disallow_untyped_calls = True
|
5 |
+
disallow_untyped_defs = True
|
6 |
+
ignore_missing_imports = True
|
7 |
+
strict_optional = False
|
roop-unleashed-main/requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu124
|
2 |
+
numpy==1.26.4
|
3 |
+
gradio==5.9.1
|
4 |
+
opencv-python-headless==4.10.0.84
|
5 |
+
onnx==1.16.1
|
6 |
+
insightface==0.7.3
|
7 |
+
albucore==0.0.16
|
8 |
+
psutil==5.9.6
|
9 |
+
torch==2.5.1+cu124; sys_platform != 'darwin'
|
10 |
+
torch==2.5.1; sys_platform == 'darwin'
|
11 |
+
torchvision==0.20.1+cu124; sys_platform != 'darwin'
|
12 |
+
torchvision==0.20.1; sys_platform == 'darwin'
|
13 |
+
onnxruntime==1.20.1; sys_platform == 'darwin' and platform_machine != 'arm64'
|
14 |
+
onnxruntime-silicon==1.20.1; sys_platform == 'darwin' and platform_machine == 'arm64'
|
15 |
+
onnxruntime-gpu==1.20.1; sys_platform != 'darwin'
|
16 |
+
tqdm==4.66.4
|
17 |
+
ftfy
|
18 |
+
regex
|
19 |
+
pyvirtualcam
|
roop-unleashed-main/roop-unleashed.ipynb
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "G9BdiCppV6AS"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Colab for roop-unleashed - Gradio version\n",
|
10 |
+
"https://github.com/C0untFloyd/roop-unleashed\n"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"metadata": {
|
16 |
+
"id": "CanIXgLJgaOj"
|
17 |
+
},
|
18 |
+
"source": [
|
19 |
+
"Install CUDA 12.6 on Google Cloud Compute\n",
|
20 |
+
"(currently unnecessary because the latest 12.x should be already installed)"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
+
"metadata": {
|
27 |
+
"id": "96GE4UgYg3Ej"
|
28 |
+
},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"# don't run this cell if you know that there is at least Cuda 12.4 installed\n",
|
32 |
+
"!apt-get -y update\n",
|
33 |
+
"!apt-get -y install cuda-toolkit-12-6\n",
|
34 |
+
"import os\n",
|
35 |
+
"os.environ[\"LD_LIBRARY_PATH\"] += \":\" + \"/usr/local/cuda-12/lib64\"\n",
|
36 |
+
"os.environ[\"LD_LIBRARY_PATH\"] += \":\" + \"/usr/local/cuda-12.6/lib64\""
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "markdown",
|
41 |
+
"metadata": {
|
42 |
+
"id": "0ZYRNb0AWLLW"
|
43 |
+
},
|
44 |
+
"source": [
|
45 |
+
"Installing & preparing requirements"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
+
"metadata": {
|
52 |
+
"id": "t1yPuhdySqCq"
|
53 |
+
},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"!git clone https://github.com/C0untFloyd/roop-unleashed.git\n",
|
57 |
+
"%cd roop-unleashed\n",
|
58 |
+
"!mv config_colab.yaml config.yaml\n",
|
59 |
+
"!pip install -r requirements.txt"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "markdown",
|
64 |
+
"metadata": {
|
65 |
+
"id": "u_4JQiSlV9Fi"
|
66 |
+
},
|
67 |
+
"source": [
|
68 |
+
"Running roop-unleashed with default config"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"metadata": {
|
75 |
+
"id": "Is6U2huqSzLE"
|
76 |
+
},
|
77 |
+
"outputs": [],
|
78 |
+
"source": [
|
79 |
+
"!python run.py"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "markdown",
|
84 |
+
"metadata": {
|
85 |
+
"id": "UdQ1VHdI8lCf"
|
86 |
+
},
|
87 |
+
"source": [
|
88 |
+
"### Download generated images folder\n",
|
89 |
+
"(only needed if you want to zip the generated output)"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"metadata": {
|
96 |
+
"colab": {
|
97 |
+
"base_uri": "https://localhost:8080/",
|
98 |
+
"height": 17
|
99 |
+
},
|
100 |
+
"id": "oYjWveAmw10X",
|
101 |
+
"outputId": "5b4c3650-f951-434a-c650-5525a8a70c1e"
|
102 |
+
},
|
103 |
+
"outputs": [
|
104 |
+
{
|
105 |
+
"data": {
|
106 |
+
"application/javascript": "\n async function download(id, filename, size) {\n if (!google.colab.kernel.accessAllowed) {\n return;\n }\n const div = document.createElement('div');\n const label = document.createElement('label');\n label.textContent = `Downloading \"${filename}\": `;\n div.appendChild(label);\n const progress = document.createElement('progress');\n progress.max = size;\n div.appendChild(progress);\n document.body.appendChild(div);\n\n const buffers = [];\n let downloaded = 0;\n\n const channel = await google.colab.kernel.comms.open(id);\n // Send a message to notify the kernel that we're ready.\n channel.send({})\n\n for await (const message of channel.messages) {\n // Send a message to notify the kernel that we're ready.\n channel.send({})\n if (message.buffers) {\n for (const buffer of message.buffers) {\n buffers.push(buffer);\n downloaded += buffer.byteLength;\n progress.value = downloaded;\n }\n }\n }\n const blob = new Blob(buffers, {type: 'application/binary'});\n const a = document.createElement('a');\n a.href = window.URL.createObjectURL(blob);\n a.download = filename;\n div.appendChild(a);\n a.click();\n div.remove();\n }\n ",
|
107 |
+
"text/plain": [
|
108 |
+
"<IPython.core.display.Javascript object>"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
"metadata": {},
|
112 |
+
"output_type": "display_data"
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"data": {
|
116 |
+
"application/javascript": "download(\"download_789eab11-93d2-4880-adf3-6aceee0cc5f9\", \"fake_output.zip.zip\", 80125)",
|
117 |
+
"text/plain": [
|
118 |
+
"<IPython.core.display.Javascript object>"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
"metadata": {},
|
122 |
+
"output_type": "display_data"
|
123 |
+
}
|
124 |
+
],
|
125 |
+
"source": [
|
126 |
+
"import shutil\n",
|
127 |
+
"import os\n",
|
128 |
+
"from google.colab import files\n",
|
129 |
+
"\n",
|
130 |
+
"def zip_directory(directory_path, zip_path):\n",
|
131 |
+
" shutil.make_archive(zip_path, 'zip', directory_path)\n",
|
132 |
+
"\n",
|
133 |
+
"# Set the directory path you want to download\n",
|
134 |
+
"directory_path = '/content/roop-unleashed/output'\n",
|
135 |
+
"\n",
|
136 |
+
"# Set the zip file name\n",
|
137 |
+
"zip_filename = 'fake_output.zip'\n",
|
138 |
+
"\n",
|
139 |
+
"# Zip the directory\n",
|
140 |
+
"zip_directory(directory_path, zip_filename)\n",
|
141 |
+
"\n",
|
142 |
+
"# Download the zip file\n",
|
143 |
+
"files.download(zip_filename+'.zip')\n"
|
144 |
+
]
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"metadata": {
|
148 |
+
"accelerator": "GPU",
|
149 |
+
"colab": {
|
150 |
+
"collapsed_sections": [
|
151 |
+
"UdQ1VHdI8lCf"
|
152 |
+
],
|
153 |
+
"gpuType": "T4",
|
154 |
+
"provenance": []
|
155 |
+
},
|
156 |
+
"kernelspec": {
|
157 |
+
"display_name": "Python 3",
|
158 |
+
"name": "python3"
|
159 |
+
},
|
160 |
+
"language_info": {
|
161 |
+
"name": "python"
|
162 |
+
}
|
163 |
+
},
|
164 |
+
"nbformat": 4,
|
165 |
+
"nbformat_minor": 0
|
166 |
+
}
|
roop-unleashed-main/roop/FaceSet.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
class FaceSet:
|
4 |
+
faces = []
|
5 |
+
ref_images = []
|
6 |
+
embedding_average = 'None'
|
7 |
+
embeddings_backup = None
|
8 |
+
|
9 |
+
def __init__(self):
|
10 |
+
self.faces = []
|
11 |
+
self.ref_images = []
|
12 |
+
self.embeddings_backup = None
|
13 |
+
|
14 |
+
def AverageEmbeddings(self):
|
15 |
+
if len(self.faces) > 1 and self.embeddings_backup is None:
|
16 |
+
self.embeddings_backup = self.faces[0]['embedding']
|
17 |
+
embeddings = [face.embedding for face in self.faces]
|
18 |
+
|
19 |
+
self.faces[0]['embedding'] = np.mean(embeddings, axis=0)
|
20 |
+
# try median too?
|
roop-unleashed-main/roop/ProcessEntry.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class ProcessEntry:
|
2 |
+
def __init__(self, filename: str, start: int, end: int, fps: float):
|
3 |
+
self.filename = filename
|
4 |
+
self.finalname = None
|
5 |
+
self.startframe = start
|
6 |
+
self.endframe = end
|
7 |
+
self.fps = fps
|
roop-unleashed-main/roop/ProcessMgr.py
ADDED
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import psutil
|
5 |
+
|
6 |
+
from roop.ProcessOptions import ProcessOptions
|
7 |
+
|
8 |
+
from roop.face_util import get_first_face, get_all_faces, rotate_anticlockwise, rotate_clockwise, clamp_cut_values
|
9 |
+
from roop.utilities import compute_cosine_distance, get_device, str_to_class, shuffle_array
|
10 |
+
import roop.vr_util as vr
|
11 |
+
|
12 |
+
from typing import Any, List, Callable
|
13 |
+
from roop.typing import Frame, Face
|
14 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
15 |
+
from threading import Thread, Lock
|
16 |
+
from queue import Queue
|
17 |
+
from tqdm import tqdm
|
18 |
+
from roop.ffmpeg_writer import FFMPEG_VideoWriter
|
19 |
+
from roop.StreamWriter import StreamWriter
|
20 |
+
import roop.globals
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
# Poor man's enum to be able to compare to int
|
25 |
+
class eNoFaceAction():
|
26 |
+
USE_ORIGINAL_FRAME = 0
|
27 |
+
RETRY_ROTATED = 1
|
28 |
+
SKIP_FRAME = 2
|
29 |
+
SKIP_FRAME_IF_DISSIMILAR = 3,
|
30 |
+
USE_LAST_SWAPPED = 4
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
|
35 |
+
queue: Queue[str] = Queue()
|
36 |
+
for frame_path in temp_frame_paths:
|
37 |
+
queue.put(frame_path)
|
38 |
+
return queue
|
39 |
+
|
40 |
+
|
41 |
+
def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
|
42 |
+
queues = []
|
43 |
+
for _ in range(queue_per_future):
|
44 |
+
if not queue.empty():
|
45 |
+
queues.append(queue.get())
|
46 |
+
return queues
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
class ProcessMgr():
|
51 |
+
input_face_datas = []
|
52 |
+
target_face_datas = []
|
53 |
+
|
54 |
+
imagemask = None
|
55 |
+
|
56 |
+
processors = []
|
57 |
+
options : ProcessOptions = None
|
58 |
+
|
59 |
+
num_threads = 1
|
60 |
+
current_index = 0
|
61 |
+
processing_threads = 1
|
62 |
+
buffer_wait_time = 0.1
|
63 |
+
|
64 |
+
lock = Lock()
|
65 |
+
|
66 |
+
frames_queue = None
|
67 |
+
processed_queue = None
|
68 |
+
|
69 |
+
videowriter= None
|
70 |
+
streamwriter = None
|
71 |
+
|
72 |
+
progress_gradio = None
|
73 |
+
total_frames = 0
|
74 |
+
|
75 |
+
num_frames_no_face = 0
|
76 |
+
last_swapped_frame = None
|
77 |
+
|
78 |
+
output_to_file = None
|
79 |
+
output_to_cam = None
|
80 |
+
|
81 |
+
|
82 |
+
plugins = {
|
83 |
+
'faceswap' : 'FaceSwapInsightFace',
|
84 |
+
'mask_clip2seg' : 'Mask_Clip2Seg',
|
85 |
+
'mask_xseg' : 'Mask_XSeg',
|
86 |
+
'codeformer' : 'Enhance_CodeFormer',
|
87 |
+
'gfpgan' : 'Enhance_GFPGAN',
|
88 |
+
'dmdnet' : 'Enhance_DMDNet',
|
89 |
+
'gpen' : 'Enhance_GPEN',
|
90 |
+
'restoreformer++' : 'Enhance_RestoreFormerPPlus',
|
91 |
+
'colorizer' : 'Frame_Colorizer',
|
92 |
+
'filter_generic' : 'Frame_Filter',
|
93 |
+
'removebg' : 'Frame_Masking',
|
94 |
+
'upscale' : 'Frame_Upscale'
|
95 |
+
}
|
96 |
+
|
97 |
+
def __init__(self, progress):
|
98 |
+
if progress is not None:
|
99 |
+
self.progress_gradio = progress
|
100 |
+
|
101 |
+
def reuseOldProcessor(self, name:str):
|
102 |
+
for p in self.processors:
|
103 |
+
if p.processorname == name:
|
104 |
+
return p
|
105 |
+
|
106 |
+
return None
|
107 |
+
|
108 |
+
|
109 |
+
def initialize(self, input_faces, target_faces, options):
|
110 |
+
self.input_face_datas = input_faces
|
111 |
+
self.target_face_datas = target_faces
|
112 |
+
self.num_frames_no_face = 0
|
113 |
+
self.last_swapped_frame = None
|
114 |
+
self.options = options
|
115 |
+
devicename = get_device()
|
116 |
+
|
117 |
+
roop.globals.g_desired_face_analysis=["landmark_3d_68", "landmark_2d_106","detection","recognition"]
|
118 |
+
if options.swap_mode == "all_female" or options.swap_mode == "all_male":
|
119 |
+
roop.globals.g_desired_face_analysis.append("genderage")
|
120 |
+
elif options.swap_mode == "all_random":
|
121 |
+
# don't modify original list
|
122 |
+
self.input_face_datas = input_faces.copy()
|
123 |
+
shuffle_array(self.input_face_datas)
|
124 |
+
|
125 |
+
|
126 |
+
for p in self.processors:
|
127 |
+
newp = next((x for x in options.processors.keys() if x == p.processorname), None)
|
128 |
+
if newp is None:
|
129 |
+
p.Release()
|
130 |
+
del p
|
131 |
+
|
132 |
+
newprocessors = []
|
133 |
+
for key, extoption in options.processors.items():
|
134 |
+
p = self.reuseOldProcessor(key)
|
135 |
+
if p is None:
|
136 |
+
classname = self.plugins[key]
|
137 |
+
module = 'roop.processors.' + classname
|
138 |
+
p = str_to_class(module, classname)
|
139 |
+
if p is not None:
|
140 |
+
extoption.update({"devicename": devicename})
|
141 |
+
if p.type == "swap":
|
142 |
+
if self.options.swap_modelname == "InSwapper 128":
|
143 |
+
extoption.update({"modelname": "inswapper_128.onnx"})
|
144 |
+
elif self.options.swap_modelname == "ReSwapper 128":
|
145 |
+
extoption.update({"modelname": "reswapper_128.onnx"})
|
146 |
+
elif self.options.swap_modelname == "ReSwapper 256":
|
147 |
+
extoption.update({"modelname": "reswapper_256.onnx"})
|
148 |
+
|
149 |
+
p.Initialize(extoption)
|
150 |
+
newprocessors.append(p)
|
151 |
+
else:
|
152 |
+
print(f"Not using {module}")
|
153 |
+
self.processors = newprocessors
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
if isinstance(self.options.imagemask, dict) and self.options.imagemask.get("layers") and len(self.options.imagemask["layers"]) > 0:
|
158 |
+
self.options.imagemask = self.options.imagemask.get("layers")[0]
|
159 |
+
# Get rid of alpha
|
160 |
+
self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_RGBA2GRAY)
|
161 |
+
if np.any(self.options.imagemask):
|
162 |
+
mo = self.input_face_datas[0].faces[0].mask_offsets
|
163 |
+
self.options.imagemask = self.blur_area(self.options.imagemask, mo[4], mo[5])
|
164 |
+
self.options.imagemask = self.options.imagemask.astype(np.float32) / 255
|
165 |
+
self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_GRAY2RGB)
|
166 |
+
else:
|
167 |
+
self.options.imagemask = None
|
168 |
+
|
169 |
+
self.options.frame_processing = False
|
170 |
+
for p in self.processors:
|
171 |
+
if p.type.startswith("frame_"):
|
172 |
+
self.options.frame_processing = True
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
def run_batch(self, source_files, target_files, threads:int = 1):
|
180 |
+
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
|
181 |
+
self.total_frames = len(source_files)
|
182 |
+
self.num_threads = threads
|
183 |
+
with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
|
184 |
+
with ThreadPoolExecutor(max_workers=threads) as executor:
|
185 |
+
futures = []
|
186 |
+
queue = create_queue(source_files)
|
187 |
+
queue_per_future = max(len(source_files) // threads, 1)
|
188 |
+
while not queue.empty():
|
189 |
+
future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
|
190 |
+
futures.append(future)
|
191 |
+
for future in as_completed(futures):
|
192 |
+
future.result()
|
193 |
+
|
194 |
+
|
195 |
+
def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
|
196 |
+
for f in current_files:
|
197 |
+
if not roop.globals.processing:
|
198 |
+
return
|
199 |
+
|
200 |
+
# Decode the byte array into an OpenCV image
|
201 |
+
temp_frame = cv2.imdecode(np.fromfile(f, dtype=np.uint8), cv2.IMREAD_COLOR)
|
202 |
+
if temp_frame is not None:
|
203 |
+
if self.options.frame_processing:
|
204 |
+
for p in self.processors:
|
205 |
+
frame = p.Run(temp_frame)
|
206 |
+
resimg = frame
|
207 |
+
else:
|
208 |
+
resimg = self.process_frame(temp_frame)
|
209 |
+
if resimg is not None:
|
210 |
+
i = source_files.index(f)
|
211 |
+
# Also let numpy write the file to support utf-8/16 filenames
|
212 |
+
cv2.imencode(f'.{roop.globals.CFG.output_image_format}',resimg)[1].tofile(target_files[i])
|
213 |
+
if update:
|
214 |
+
update()
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
|
219 |
+
num_frame = 0
|
220 |
+
total_num = frame_end - frame_start
|
221 |
+
if frame_start > 0:
|
222 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)
|
223 |
+
|
224 |
+
while True and roop.globals.processing:
|
225 |
+
ret, frame = cap.read()
|
226 |
+
if not ret:
|
227 |
+
break
|
228 |
+
|
229 |
+
self.frames_queue[num_frame % num_threads].put(frame, block=True)
|
230 |
+
num_frame += 1
|
231 |
+
if num_frame == total_num:
|
232 |
+
break
|
233 |
+
|
234 |
+
for i in range(num_threads):
|
235 |
+
self.frames_queue[i].put(None)
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
def process_videoframes(self, threadindex, progress) -> None:
|
240 |
+
while True:
|
241 |
+
frame = self.frames_queue[threadindex].get()
|
242 |
+
if frame is None:
|
243 |
+
self.processing_threads -= 1
|
244 |
+
self.processed_queue[threadindex].put((False, None))
|
245 |
+
return
|
246 |
+
else:
|
247 |
+
if self.options.frame_processing:
|
248 |
+
for p in self.processors:
|
249 |
+
frame = p.Run(frame)
|
250 |
+
resimg = frame
|
251 |
+
else:
|
252 |
+
resimg = self.process_frame(frame)
|
253 |
+
self.processed_queue[threadindex].put((True, resimg))
|
254 |
+
del frame
|
255 |
+
progress()
|
256 |
+
|
257 |
+
|
258 |
+
def write_frames_thread(self):
|
259 |
+
nextindex = 0
|
260 |
+
num_producers = self.num_threads
|
261 |
+
|
262 |
+
while True:
|
263 |
+
process, frame = self.processed_queue[nextindex % self.num_threads].get()
|
264 |
+
nextindex += 1
|
265 |
+
if frame is not None:
|
266 |
+
if self.output_to_file:
|
267 |
+
self.videowriter.write_frame(frame)
|
268 |
+
if self.output_to_cam:
|
269 |
+
self.streamwriter.WriteToStream(frame)
|
270 |
+
del frame
|
271 |
+
elif process == False:
|
272 |
+
num_producers -= 1
|
273 |
+
if num_producers < 1:
|
274 |
+
return
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
def run_batch_inmem(self, output_method, source_video, target_video, frame_start, frame_end, fps, threads:int = 1):
|
279 |
+
if len(self.processors) < 1:
|
280 |
+
print("No processor defined!")
|
281 |
+
return
|
282 |
+
|
283 |
+
cap = cv2.VideoCapture(source_video)
|
284 |
+
# frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
285 |
+
frame_count = (frame_end - frame_start) + 1
|
286 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
287 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
288 |
+
|
289 |
+
processed_resolution = None
|
290 |
+
for p in self.processors:
|
291 |
+
if hasattr(p, 'getProcessedResolution'):
|
292 |
+
processed_resolution = p.getProcessedResolution(width, height)
|
293 |
+
print(f"Processed resolution: {processed_resolution}")
|
294 |
+
if processed_resolution is not None:
|
295 |
+
width = processed_resolution[0]
|
296 |
+
height = processed_resolution[1]
|
297 |
+
|
298 |
+
|
299 |
+
self.total_frames = frame_count
|
300 |
+
self.num_threads = threads
|
301 |
+
|
302 |
+
self.processing_threads = self.num_threads
|
303 |
+
self.frames_queue = []
|
304 |
+
self.processed_queue = []
|
305 |
+
for _ in range(threads):
|
306 |
+
self.frames_queue.append(Queue(1))
|
307 |
+
self.processed_queue.append(Queue(1))
|
308 |
+
|
309 |
+
self.output_to_file = output_method != "Virtual Camera"
|
310 |
+
self.output_to_cam = output_method == "Virtual Camera" or output_method == "Both"
|
311 |
+
|
312 |
+
if self.output_to_file:
|
313 |
+
self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)
|
314 |
+
if self.output_to_cam:
|
315 |
+
self.streamwriter = StreamWriter((width, height), int(fps))
|
316 |
+
|
317 |
+
readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
|
318 |
+
readthread.start()
|
319 |
+
|
320 |
+
writethread = Thread(target=self.write_frames_thread)
|
321 |
+
writethread.start()
|
322 |
+
|
323 |
+
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
|
324 |
+
with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
|
325 |
+
with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
|
326 |
+
futures = []
|
327 |
+
|
328 |
+
for threadindex in range(threads):
|
329 |
+
future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
|
330 |
+
futures.append(future)
|
331 |
+
|
332 |
+
for future in as_completed(futures):
|
333 |
+
future.result()
|
334 |
+
# wait for the task to complete
|
335 |
+
readthread.join()
|
336 |
+
writethread.join()
|
337 |
+
cap.release()
|
338 |
+
if self.output_to_file:
|
339 |
+
self.videowriter.close()
|
340 |
+
if self.output_to_cam:
|
341 |
+
self.streamwriter.Close()
|
342 |
+
|
343 |
+
self.frames_queue.clear()
|
344 |
+
self.processed_queue.clear()
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
def update_progress(self, progress: Any = None) -> None:
|
350 |
+
process = psutil.Process(os.getpid())
|
351 |
+
memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
|
352 |
+
progress.set_postfix({
|
353 |
+
'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
|
354 |
+
'execution_threads': self.num_threads
|
355 |
+
})
|
356 |
+
progress.update(1)
|
357 |
+
if self.progress_gradio is not None:
|
358 |
+
self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
def process_frame(self, frame:Frame):
|
363 |
+
if len(self.input_face_datas) < 1 and not self.options.show_face_masking:
|
364 |
+
return frame
|
365 |
+
temp_frame = frame.copy()
|
366 |
+
num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
|
367 |
+
if num_swapped > 0:
|
368 |
+
if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME_IF_DISSIMILAR:
|
369 |
+
if len(self.input_face_datas) > num_swapped:
|
370 |
+
return None
|
371 |
+
self.num_frames_no_face = 0
|
372 |
+
self.last_swapped_frame = temp_frame.copy()
|
373 |
+
return temp_frame
|
374 |
+
if roop.globals.no_face_action == eNoFaceAction.USE_LAST_SWAPPED:
|
375 |
+
if self.last_swapped_frame is not None and self.num_frames_no_face < self.options.max_num_reuse_frame:
|
376 |
+
self.num_frames_no_face += 1
|
377 |
+
return self.last_swapped_frame.copy()
|
378 |
+
return frame
|
379 |
+
|
380 |
+
elif roop.globals.no_face_action == eNoFaceAction.USE_ORIGINAL_FRAME:
|
381 |
+
return frame
|
382 |
+
if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME:
|
383 |
+
#This only works with in-mem processing, as it simply skips the frame.
|
384 |
+
#For 'extract frames' it simply leaves the unprocessed frame unprocessed and it gets used in the final output by ffmpeg.
|
385 |
+
#If we could delete that frame here, that'd work but that might cause ffmpeg to fail unless the frames are renamed, and I don't think we have the info on what frame it actually is?????
|
386 |
+
#alternatively, it could mark all the necessary frames for deletion, delete them at the end, then rename the remaining frames that might work?
|
387 |
+
return None
|
388 |
+
else:
|
389 |
+
return self.retry_rotated(frame)
|
390 |
+
|
391 |
+
def retry_rotated(self, frame):
|
392 |
+
copyframe = frame.copy()
|
393 |
+
copyframe = rotate_clockwise(copyframe)
|
394 |
+
temp_frame = copyframe.copy()
|
395 |
+
num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
|
396 |
+
if num_swapped > 0:
|
397 |
+
return rotate_anticlockwise(temp_frame)
|
398 |
+
|
399 |
+
copyframe = frame.copy()
|
400 |
+
copyframe = rotate_anticlockwise(copyframe)
|
401 |
+
temp_frame = copyframe.copy()
|
402 |
+
num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
|
403 |
+
if num_swapped > 0:
|
404 |
+
return rotate_clockwise(temp_frame)
|
405 |
+
del copyframe
|
406 |
+
return frame
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
def swap_faces(self, frame, temp_frame):
|
411 |
+
num_faces_found = 0
|
412 |
+
|
413 |
+
if self.options.swap_mode == "first":
|
414 |
+
face = get_first_face(frame)
|
415 |
+
|
416 |
+
if face is None:
|
417 |
+
return num_faces_found, frame
|
418 |
+
|
419 |
+
num_faces_found += 1
|
420 |
+
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
|
421 |
+
del face
|
422 |
+
|
423 |
+
else:
|
424 |
+
faces = get_all_faces(frame)
|
425 |
+
if faces is None:
|
426 |
+
return num_faces_found, frame
|
427 |
+
|
428 |
+
if self.options.swap_mode == "all":
|
429 |
+
for face in faces:
|
430 |
+
num_faces_found += 1
|
431 |
+
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
|
432 |
+
|
433 |
+
elif self.options.swap_mode == "all_input" or self.options.swap_mode == "all_random":
|
434 |
+
for i,face in enumerate(faces):
|
435 |
+
num_faces_found += 1
|
436 |
+
if i < len(self.input_face_datas):
|
437 |
+
temp_frame = self.process_face(i, face, temp_frame)
|
438 |
+
else:
|
439 |
+
break
|
440 |
+
|
441 |
+
elif self.options.swap_mode == "selected":
|
442 |
+
num_targetfaces = len(self.target_face_datas)
|
443 |
+
use_index = num_targetfaces == 1
|
444 |
+
for i,tf in enumerate(self.target_face_datas):
|
445 |
+
for face in faces:
|
446 |
+
if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
|
447 |
+
if i < len(self.input_face_datas):
|
448 |
+
if use_index:
|
449 |
+
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
|
450 |
+
else:
|
451 |
+
temp_frame = self.process_face(i, face, temp_frame)
|
452 |
+
num_faces_found += 1
|
453 |
+
if not roop.globals.vr_mode and num_faces_found == num_targetfaces:
|
454 |
+
break
|
455 |
+
elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
|
456 |
+
gender = 'F' if self.options.swap_mode == "all_female" else 'M'
|
457 |
+
for face in faces:
|
458 |
+
if face.sex == gender:
|
459 |
+
num_faces_found += 1
|
460 |
+
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
|
461 |
+
|
462 |
+
# might be slower but way more clean to release everything here
|
463 |
+
for face in faces:
|
464 |
+
del face
|
465 |
+
faces.clear()
|
466 |
+
|
467 |
+
|
468 |
+
|
469 |
+
if roop.globals.vr_mode and num_faces_found % 2 > 0:
|
470 |
+
# stereo image, there has to be an even number of faces
|
471 |
+
num_faces_found = 0
|
472 |
+
return num_faces_found, frame
|
473 |
+
if num_faces_found == 0:
|
474 |
+
return num_faces_found, frame
|
475 |
+
|
476 |
+
#maskprocessor = next((x for x in self.processors if x.type == 'mask'), None)
|
477 |
+
|
478 |
+
if self.options.imagemask is not None and self.options.imagemask.shape == frame.shape:
|
479 |
+
temp_frame = self.simple_blend_with_mask(temp_frame, frame, self.options.imagemask)
|
480 |
+
return num_faces_found, temp_frame
|
481 |
+
|
482 |
+
|
483 |
+
def rotation_action(self, original_face:Face, frame:Frame):
|
484 |
+
(height, width) = frame.shape[:2]
|
485 |
+
|
486 |
+
bounding_box_width = original_face.bbox[2] - original_face.bbox[0]
|
487 |
+
bounding_box_height = original_face.bbox[3] - original_face.bbox[1]
|
488 |
+
horizontal_face = bounding_box_width > bounding_box_height
|
489 |
+
|
490 |
+
center_x = width // 2.0
|
491 |
+
start_x = original_face.bbox[0]
|
492 |
+
end_x = original_face.bbox[2]
|
493 |
+
bbox_center_x = start_x + (bounding_box_width // 2.0)
|
494 |
+
|
495 |
+
# need to leverage the array of landmarks as decribed here:
|
496 |
+
# https://github.com/deepinsight/insightface/tree/master/alignment/coordinate_reg
|
497 |
+
# basically, we should be able to check for the relative position of eyes and nose
|
498 |
+
# then use that to determine which way the face is actually facing when in a horizontal position
|
499 |
+
# and use that to determine the correct rotation_action
|
500 |
+
|
501 |
+
forehead_x = original_face.landmark_2d_106[72][0]
|
502 |
+
chin_x = original_face.landmark_2d_106[0][0]
|
503 |
+
|
504 |
+
if horizontal_face:
|
505 |
+
if chin_x < forehead_x:
|
506 |
+
# this is someone lying down with their face like this (:
|
507 |
+
return "rotate_anticlockwise"
|
508 |
+
elif forehead_x < chin_x:
|
509 |
+
# this is someone lying down with their face like this :)
|
510 |
+
return "rotate_clockwise"
|
511 |
+
if bbox_center_x >= center_x:
|
512 |
+
# this is someone lying down with their face in the right hand side of the frame
|
513 |
+
return "rotate_anticlockwise"
|
514 |
+
if bbox_center_x < center_x:
|
515 |
+
# this is someone lying down with their face in the left hand side of the frame
|
516 |
+
return "rotate_clockwise"
|
517 |
+
|
518 |
+
return None
|
519 |
+
|
520 |
+
|
521 |
+
def auto_rotate_frame(self, original_face, frame:Frame):
|
522 |
+
target_face = original_face
|
523 |
+
original_frame = frame
|
524 |
+
|
525 |
+
rotation_action = self.rotation_action(original_face, frame)
|
526 |
+
|
527 |
+
if rotation_action == "rotate_anticlockwise":
|
528 |
+
#face is horizontal, rotating frame anti-clockwise and getting face bounding box from rotated frame
|
529 |
+
frame = rotate_anticlockwise(frame)
|
530 |
+
elif rotation_action == "rotate_clockwise":
|
531 |
+
#face is horizontal, rotating frame clockwise and getting face bounding box from rotated frame
|
532 |
+
frame = rotate_clockwise(frame)
|
533 |
+
|
534 |
+
return target_face, frame, rotation_action
|
535 |
+
|
536 |
+
|
537 |
+
def auto_unrotate_frame(self, frame:Frame, rotation_action):
|
538 |
+
if rotation_action == "rotate_anticlockwise":
|
539 |
+
return rotate_clockwise(frame)
|
540 |
+
elif rotation_action == "rotate_clockwise":
|
541 |
+
return rotate_anticlockwise(frame)
|
542 |
+
|
543 |
+
return frame
|
544 |
+
|
545 |
+
|
546 |
+
|
547 |
+
def process_face(self,face_index, target_face:Face, frame:Frame):
|
548 |
+
from roop.face_util import align_crop
|
549 |
+
|
550 |
+
enhanced_frame = None
|
551 |
+
if(len(self.input_face_datas) > 0):
|
552 |
+
inputface = self.input_face_datas[face_index].faces[0]
|
553 |
+
else:
|
554 |
+
inputface = None
|
555 |
+
|
556 |
+
rotation_action = None
|
557 |
+
if roop.globals.autorotate_faces:
|
558 |
+
# check for sideways rotation of face
|
559 |
+
rotation_action = self.rotation_action(target_face, frame)
|
560 |
+
if rotation_action is not None:
|
561 |
+
(startX, startY, endX, endY) = target_face["bbox"].astype("int")
|
562 |
+
width = endX - startX
|
563 |
+
height = endY - startY
|
564 |
+
offs = int(max(width,height) * 0.25)
|
565 |
+
rotcutframe,startX, startY, endX, endY = self.cutout(frame, startX - offs, startY - offs, endX + offs, endY + offs)
|
566 |
+
if rotation_action == "rotate_anticlockwise":
|
567 |
+
rotcutframe = rotate_anticlockwise(rotcutframe)
|
568 |
+
elif rotation_action == "rotate_clockwise":
|
569 |
+
rotcutframe = rotate_clockwise(rotcutframe)
|
570 |
+
# rotate image and re-detect face to correct wonky landmarks
|
571 |
+
rotface = get_first_face(rotcutframe)
|
572 |
+
if rotface is None:
|
573 |
+
rotation_action = None
|
574 |
+
else:
|
575 |
+
saved_frame = frame.copy()
|
576 |
+
frame = rotcutframe
|
577 |
+
target_face = rotface
|
578 |
+
|
579 |
+
|
580 |
+
|
581 |
+
# if roop.globals.vr_mode:
|
582 |
+
# bbox = target_face.bbox
|
583 |
+
# [orig_width, orig_height, _] = frame.shape
|
584 |
+
|
585 |
+
# # Convert bounding box to ints
|
586 |
+
# x1, y1, x2, y2 = map(int, bbox)
|
587 |
+
|
588 |
+
# # Determine the center of the bounding box
|
589 |
+
# x_center = (x1 + x2) / 2
|
590 |
+
# y_center = (y1 + y2) / 2
|
591 |
+
|
592 |
+
# # Normalize coordinates to range [-1, 1]
|
593 |
+
# x_center_normalized = x_center / (orig_width / 2) - 1
|
594 |
+
# y_center_normalized = y_center / (orig_width / 2) - 1
|
595 |
+
|
596 |
+
# # Convert normalized coordinates to spherical (theta, phi)
|
597 |
+
# theta = x_center_normalized * 180 # Theta ranges from -180 to 180 degrees
|
598 |
+
# phi = -y_center_normalized * 90 # Phi ranges from -90 to 90 degrees
|
599 |
+
|
600 |
+
# img = vr.GetPerspective(frame, 90, theta, phi, 1280, 1280) # Generate perspective image
|
601 |
+
|
602 |
+
|
603 |
+
""" Code ported/adapted from Facefusion which borrowed the idea from Rope:
|
604 |
+
Kind of subsampling the cutout and aligned face image and faceswapping slices of it up to
|
605 |
+
the desired output resolution. This works around the current resolution limitations without using enhancers.
|
606 |
+
"""
|
607 |
+
model_output_size = self.options.swap_output_size
|
608 |
+
subsample_size = max(self.options.subsample_size, model_output_size)
|
609 |
+
subsample_total = subsample_size // model_output_size
|
610 |
+
aligned_img, M = align_crop(frame, target_face.kps, subsample_size)
|
611 |
+
|
612 |
+
fake_frame = aligned_img
|
613 |
+
target_face.matrix = M
|
614 |
+
|
615 |
+
for p in self.processors:
|
616 |
+
if p.type == 'swap':
|
617 |
+
swap_result_frames = []
|
618 |
+
subsample_frames = self.implode_pixel_boost(aligned_img, model_output_size, subsample_total)
|
619 |
+
for sliced_frame in subsample_frames:
|
620 |
+
for _ in range(0,self.options.num_swap_steps):
|
621 |
+
sliced_frame = self.prepare_crop_frame(sliced_frame)
|
622 |
+
sliced_frame = p.Run(inputface, target_face, sliced_frame)
|
623 |
+
sliced_frame = self.normalize_swap_frame(sliced_frame)
|
624 |
+
swap_result_frames.append(sliced_frame)
|
625 |
+
fake_frame = self.explode_pixel_boost(swap_result_frames, model_output_size, subsample_total, subsample_size)
|
626 |
+
fake_frame = fake_frame.astype(np.uint8)
|
627 |
+
scale_factor = 0.0
|
628 |
+
elif p.type == 'mask':
|
629 |
+
fake_frame = self.process_mask(p, aligned_img, fake_frame)
|
630 |
+
else:
|
631 |
+
enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)
|
632 |
+
|
633 |
+
upscale = 512
|
634 |
+
orig_width = fake_frame.shape[1]
|
635 |
+
if orig_width != upscale:
|
636 |
+
fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
|
637 |
+
mask_offsets = (0,0,0,0,1,20) if inputface is None else inputface.mask_offsets
|
638 |
+
|
639 |
+
|
640 |
+
if enhanced_frame is None:
|
641 |
+
scale_factor = int(upscale / orig_width)
|
642 |
+
result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
|
643 |
+
else:
|
644 |
+
result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)
|
645 |
+
|
646 |
+
# Restore mouth before unrotating
|
647 |
+
if self.options.restore_original_mouth:
|
648 |
+
mouth_cutout, mouth_bb = self.create_mouth_mask(target_face, frame)
|
649 |
+
result = self.apply_mouth_area(result, mouth_cutout, mouth_bb)
|
650 |
+
|
651 |
+
if rotation_action is not None:
|
652 |
+
fake_frame = self.auto_unrotate_frame(result, rotation_action)
|
653 |
+
result = self.paste_simple(fake_frame, saved_frame, startX, startY)
|
654 |
+
|
655 |
+
return result
|
656 |
+
|
657 |
+
|
658 |
+
|
659 |
+
|
660 |
+
def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
|
661 |
+
if start_x < 0:
|
662 |
+
start_x = 0
|
663 |
+
if start_y < 0:
|
664 |
+
start_y = 0
|
665 |
+
if end_x > frame.shape[1]:
|
666 |
+
end_x = frame.shape[1]
|
667 |
+
if end_y > frame.shape[0]:
|
668 |
+
end_y = frame.shape[0]
|
669 |
+
return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y
|
670 |
+
|
671 |
+
def paste_simple(self, src:Frame, dest:Frame, start_x, start_y):
|
672 |
+
end_x = start_x + src.shape[1]
|
673 |
+
end_y = start_y + src.shape[0]
|
674 |
+
|
675 |
+
start_x, end_x, start_y, end_y = clamp_cut_values(start_x, end_x, start_y, end_y, dest)
|
676 |
+
dest[start_y:end_y, start_x:end_x] = src
|
677 |
+
return dest
|
678 |
+
|
679 |
+
def simple_blend_with_mask(self, image1, image2, mask):
|
680 |
+
# Blend the images
|
681 |
+
blended_image = image1.astype(np.float32) * (1.0 - mask) + image2.astype(np.float32) * mask
|
682 |
+
return blended_image.astype(np.uint8)
|
683 |
+
|
684 |
+
|
685 |
+
def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
|
686 |
+
M_scale = M * scale_factor
|
687 |
+
IM = cv2.invertAffineTransform(M_scale)
|
688 |
+
|
689 |
+
face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
|
690 |
+
# Generate white square sized as a upsk_face
|
691 |
+
img_matte = np.zeros((upsk_face.shape[0],upsk_face.shape[1]), dtype=np.uint8)
|
692 |
+
|
693 |
+
w = img_matte.shape[1]
|
694 |
+
h = img_matte.shape[0]
|
695 |
+
|
696 |
+
top = int(mask_offsets[0] * h)
|
697 |
+
bottom = int(h - (mask_offsets[1] * h))
|
698 |
+
left = int(mask_offsets[2] * w)
|
699 |
+
right = int(w - (mask_offsets[3] * w))
|
700 |
+
img_matte[top:bottom,left:right] = 255
|
701 |
+
|
702 |
+
# Transform white square back to target_img
|
703 |
+
img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0)
|
704 |
+
##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
|
705 |
+
img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0
|
706 |
+
|
707 |
+
img_matte = self.blur_area(img_matte, mask_offsets[4], mask_offsets[5])
|
708 |
+
#Normalize images to float values and reshape
|
709 |
+
img_matte = img_matte.astype(np.float32)/255
|
710 |
+
face_matte = face_matte.astype(np.float32)/255
|
711 |
+
img_matte = np.minimum(face_matte, img_matte)
|
712 |
+
if self.options.show_face_area_overlay:
|
713 |
+
# Additional steps for green overlay
|
714 |
+
green_overlay = np.zeros_like(target_img)
|
715 |
+
green_color = [0, 255, 0] # RGB for green
|
716 |
+
for i in range(3): # Apply green color where img_matte is not zero
|
717 |
+
green_overlay[:, :, i] = np.where(img_matte > 0, green_color[i], 0) ##Transform upcaled face back to target_img
|
718 |
+
img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1])
|
719 |
+
paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
|
720 |
+
if upsk_face is not fake_face:
|
721 |
+
fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
|
722 |
+
paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)
|
723 |
+
|
724 |
+
# Re-assemble image
|
725 |
+
paste_face = img_matte * paste_face
|
726 |
+
paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
|
727 |
+
if self.options.show_face_area_overlay:
|
728 |
+
# Overlay the green overlay on the final image
|
729 |
+
paste_face = cv2.addWeighted(paste_face.astype(np.uint8), 1 - 0.5, green_overlay, 0.5, 0)
|
730 |
+
return paste_face.astype(np.uint8)
|
731 |
+
|
732 |
+
|
733 |
+
def blur_area(self, img_matte, num_erosion_iterations, blur_amount):
|
734 |
+
# Detect the affine transformed white area
|
735 |
+
mask_h_inds, mask_w_inds = np.where(img_matte==255)
|
736 |
+
# Calculate the size (and diagonal size) of transformed white area width and height boundaries
|
737 |
+
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
|
738 |
+
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
|
739 |
+
mask_size = int(np.sqrt(mask_h*mask_w))
|
740 |
+
# Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
|
741 |
+
# k = max(mask_size//12, 8)
|
742 |
+
k = max(mask_size//(blur_amount // 2) , blur_amount // 2)
|
743 |
+
kernel = np.ones((k,k),np.uint8)
|
744 |
+
img_matte = cv2.erode(img_matte,kernel,iterations = num_erosion_iterations)
|
745 |
+
#Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
|
746 |
+
# k = max(mask_size//24, 4)
|
747 |
+
k = max(mask_size//blur_amount, blur_amount//5)
|
748 |
+
kernel_size = (k, k)
|
749 |
+
blur_size = tuple(2*i+1 for i in kernel_size)
|
750 |
+
return cv2.GaussianBlur(img_matte, blur_size, 0)
|
751 |
+
|
752 |
+
|
753 |
+
def prepare_crop_frame(self, swap_frame):
|
754 |
+
model_type = 'inswapper'
|
755 |
+
model_mean = [0.0, 0.0, 0.0]
|
756 |
+
model_standard_deviation = [1.0, 1.0, 1.0]
|
757 |
+
|
758 |
+
if model_type == 'ghost':
|
759 |
+
swap_frame = swap_frame[:, :, ::-1] / 127.5 - 1
|
760 |
+
else:
|
761 |
+
swap_frame = swap_frame[:, :, ::-1] / 255.0
|
762 |
+
swap_frame = (swap_frame - model_mean) / model_standard_deviation
|
763 |
+
swap_frame = swap_frame.transpose(2, 0, 1)
|
764 |
+
swap_frame = np.expand_dims(swap_frame, axis = 0).astype(np.float32)
|
765 |
+
return swap_frame
|
766 |
+
|
767 |
+
|
768 |
+
def normalize_swap_frame(self, swap_frame):
|
769 |
+
model_type = 'inswapper'
|
770 |
+
swap_frame = swap_frame.transpose(1, 2, 0)
|
771 |
+
|
772 |
+
if model_type == 'ghost':
|
773 |
+
swap_frame = (swap_frame * 127.5 + 127.5).round()
|
774 |
+
else:
|
775 |
+
swap_frame = (swap_frame * 255.0).round()
|
776 |
+
swap_frame = swap_frame[:, :, ::-1]
|
777 |
+
return swap_frame
|
778 |
+
|
779 |
+
def implode_pixel_boost(self, aligned_face_frame, model_size, pixel_boost_total : int):
|
780 |
+
subsample_frame = aligned_face_frame.reshape(model_size, pixel_boost_total, model_size, pixel_boost_total, 3)
|
781 |
+
subsample_frame = subsample_frame.transpose(1, 3, 0, 2, 4).reshape(pixel_boost_total ** 2, model_size, model_size, 3)
|
782 |
+
return subsample_frame
|
783 |
+
|
784 |
+
|
785 |
+
def explode_pixel_boost(self, subsample_frame, model_size, pixel_boost_total, pixel_boost_size):
|
786 |
+
final_frame = np.stack(subsample_frame, axis = 0).reshape(pixel_boost_total, pixel_boost_total, model_size, model_size, 3)
|
787 |
+
final_frame = final_frame.transpose(2, 0, 3, 1, 4).reshape(pixel_boost_size, pixel_boost_size, 3)
|
788 |
+
return final_frame
|
789 |
+
|
790 |
+
def process_mask(self, processor, frame:Frame, target:Frame):
|
791 |
+
img_mask = processor.Run(frame, self.options.masking_text)
|
792 |
+
img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
|
793 |
+
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
|
794 |
+
|
795 |
+
if self.options.show_face_masking:
|
796 |
+
result = (1 - img_mask) * frame.astype(np.float32)
|
797 |
+
return np.uint8(result)
|
798 |
+
|
799 |
+
|
800 |
+
target = target.astype(np.float32)
|
801 |
+
result = (1-img_mask) * target
|
802 |
+
result += img_mask * frame.astype(np.float32)
|
803 |
+
return np.uint8(result)
|
804 |
+
|
805 |
+
|
806 |
+
# Code for mouth restoration adapted from https://github.com/iVideoGameBoss/iRoopDeepFaceCam
|
807 |
+
|
808 |
+
def create_mouth_mask(self, face: Face, frame: Frame):
|
809 |
+
mouth_cutout = None
|
810 |
+
|
811 |
+
landmarks = face.landmark_2d_106
|
812 |
+
if landmarks is not None:
|
813 |
+
# Get mouth landmarks (indices 52 to 71 typically represent the outer mouth)
|
814 |
+
mouth_points = landmarks[52:71].astype(np.int32)
|
815 |
+
|
816 |
+
# Add padding to mouth area
|
817 |
+
min_x, min_y = np.min(mouth_points, axis=0)
|
818 |
+
max_x, max_y = np.max(mouth_points, axis=0)
|
819 |
+
min_x = max(0, min_x - (15*6))
|
820 |
+
min_y = max(0, min_y - 22)
|
821 |
+
max_x = min(frame.shape[1], max_x + (15*6))
|
822 |
+
max_y = min(frame.shape[0], max_y + (90*6))
|
823 |
+
|
824 |
+
# Extract the mouth area from the frame using the calculated bounding box
|
825 |
+
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
|
826 |
+
|
827 |
+
return mouth_cutout, (min_x, min_y, max_x, max_y)
|
828 |
+
|
829 |
+
|
830 |
+
|
831 |
+
def create_feathered_mask(self, shape, feather_amount=30):
|
832 |
+
mask = np.zeros(shape[:2], dtype=np.float32)
|
833 |
+
center = (shape[1] // 2, shape[0] // 2)
|
834 |
+
cv2.ellipse(mask, center, (shape[1] // 2 - feather_amount, shape[0] // 2 - feather_amount),
|
835 |
+
0, 0, 360, 1, -1)
|
836 |
+
mask = cv2.GaussianBlur(mask, (feather_amount*2+1, feather_amount*2+1), 0)
|
837 |
+
return mask / np.max(mask)
|
838 |
+
|
839 |
+
def apply_mouth_area(self, frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple) -> np.ndarray:
|
840 |
+
min_x, min_y, max_x, max_y = mouth_box
|
841 |
+
box_width = max_x - min_x
|
842 |
+
box_height = max_y - min_y
|
843 |
+
|
844 |
+
|
845 |
+
# Resize the mouth cutout to match the mouth box size
|
846 |
+
if mouth_cutout is None or box_width is None or box_height is None:
|
847 |
+
return frame
|
848 |
+
try:
|
849 |
+
resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height))
|
850 |
+
|
851 |
+
# Extract the region of interest (ROI) from the target frame
|
852 |
+
roi = frame[min_y:max_y, min_x:max_x]
|
853 |
+
|
854 |
+
# Ensure the ROI and resized_mouth_cutout have the same shape
|
855 |
+
if roi.shape != resized_mouth_cutout.shape:
|
856 |
+
resized_mouth_cutout = cv2.resize(resized_mouth_cutout, (roi.shape[1], roi.shape[0]))
|
857 |
+
|
858 |
+
# Apply color transfer from ROI to mouth cutout
|
859 |
+
color_corrected_mouth = self.apply_color_transfer(resized_mouth_cutout, roi)
|
860 |
+
|
861 |
+
# Create a feathered mask with increased feather amount
|
862 |
+
feather_amount = min(30, box_width // 15, box_height // 15)
|
863 |
+
mask = self.create_feathered_mask(resized_mouth_cutout.shape, feather_amount)
|
864 |
+
|
865 |
+
# Blend the color-corrected mouth cutout with the ROI using the feathered mask
|
866 |
+
mask = mask[:,:,np.newaxis] # Add channel dimension to mask
|
867 |
+
blended = (color_corrected_mouth * mask + roi * (1 - mask)).astype(np.uint8)
|
868 |
+
|
869 |
+
# Place the blended result back into the frame
|
870 |
+
frame[min_y:max_y, min_x:max_x] = blended
|
871 |
+
except Exception as e:
|
872 |
+
print(f'Error {e}')
|
873 |
+
pass
|
874 |
+
|
875 |
+
return frame
|
876 |
+
|
877 |
+
def apply_color_transfer(self, source, target):
|
878 |
+
"""
|
879 |
+
Apply color transfer from target to source image
|
880 |
+
"""
|
881 |
+
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
|
882 |
+
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
|
883 |
+
|
884 |
+
source_mean, source_std = cv2.meanStdDev(source)
|
885 |
+
target_mean, target_std = cv2.meanStdDev(target)
|
886 |
+
|
887 |
+
# Reshape mean and std to be broadcastable
|
888 |
+
source_mean = source_mean.reshape(1, 1, 3)
|
889 |
+
source_std = source_std.reshape(1, 1, 3)
|
890 |
+
target_mean = target_mean.reshape(1, 1, 3)
|
891 |
+
target_std = target_std.reshape(1, 1, 3)
|
892 |
+
|
893 |
+
# Perform the color transfer
|
894 |
+
source = (source - source_mean) * (target_std / source_std) + target_mean
|
895 |
+
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
|
896 |
+
|
897 |
+
|
898 |
+
|
899 |
+
def unload_models():
|
900 |
+
pass
|
901 |
+
|
902 |
+
|
903 |
+
def release_resources(self):
|
904 |
+
for p in self.processors:
|
905 |
+
p.Release()
|
906 |
+
self.processors.clear()
|
907 |
+
if self.videowriter is not None:
|
908 |
+
self.videowriter.close()
|
909 |
+
if self.streamwriter is not None:
|
910 |
+
self.streamwriter.Close()
|
911 |
+
|
roop-unleashed-main/roop/ProcessOptions.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class ProcessOptions:
|
2 |
+
|
3 |
+
def __init__(self, swap_model, processordefines:dict, face_distance, blend_ratio, swap_mode, selected_index, masking_text, imagemask, num_steps, subsample_size, show_face_area, restore_original_mouth, show_mask=False):
|
4 |
+
self.swap_modelname = swap_model
|
5 |
+
self.swap_output_size = int(swap_model.split()[-1])
|
6 |
+
self.processors = processordefines
|
7 |
+
self.face_distance_threshold = face_distance
|
8 |
+
self.blend_ratio = blend_ratio
|
9 |
+
self.swap_mode = swap_mode
|
10 |
+
self.selected_index = selected_index
|
11 |
+
self.masking_text = masking_text
|
12 |
+
self.imagemask = imagemask
|
13 |
+
self.num_swap_steps = num_steps
|
14 |
+
self.show_face_area_overlay = show_face_area
|
15 |
+
self.show_face_masking = show_mask
|
16 |
+
self.subsample_size = subsample_size
|
17 |
+
self.restore_original_mouth = restore_original_mouth
|
18 |
+
self.max_num_reuse_frame = 15
|
roop-unleashed-main/roop/StreamWriter.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import threading
|
2 |
+
import time
|
3 |
+
import pyvirtualcam
|
4 |
+
|
5 |
+
|
6 |
+
class StreamWriter():
|
7 |
+
FPS = 30
|
8 |
+
VCam = None
|
9 |
+
Active = False
|
10 |
+
THREAD_LOCK_STREAM = threading.Lock()
|
11 |
+
time_last_process = None
|
12 |
+
timespan_min = 0.0
|
13 |
+
|
14 |
+
def __enter__(self):
|
15 |
+
return self
|
16 |
+
|
17 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
18 |
+
self.Close()
|
19 |
+
|
20 |
+
def __init__(self, size, fps):
|
21 |
+
self.time_last_process = time.perf_counter()
|
22 |
+
self.FPS = fps
|
23 |
+
self.timespan_min = 1.0 / fps
|
24 |
+
print('Detecting virtual cam devices')
|
25 |
+
self.VCam = pyvirtualcam.Camera(width=size[0], height=size[1], fps=fps, fmt=pyvirtualcam.PixelFormat.BGR, print_fps=False)
|
26 |
+
if self.VCam is None:
|
27 |
+
print("No virtual camera found!")
|
28 |
+
return
|
29 |
+
print(f'Using virtual camera: {self.VCam.device}')
|
30 |
+
print(f'Using {self.VCam.native_fmt}')
|
31 |
+
self.Active = True
|
32 |
+
|
33 |
+
|
34 |
+
def LimitFrames(self):
|
35 |
+
while True:
|
36 |
+
current_time = time.perf_counter()
|
37 |
+
time_passed = current_time - self.time_last_process
|
38 |
+
if time_passed >= self.timespan_min:
|
39 |
+
break
|
40 |
+
|
41 |
+
# First version used a queue and threading. Surprisingly this
|
42 |
+
# totally simple, blocking version is 10 times faster!
|
43 |
+
def WriteToStream(self, frame):
|
44 |
+
if self.VCam is None:
|
45 |
+
return
|
46 |
+
with self.THREAD_LOCK_STREAM:
|
47 |
+
self.LimitFrames()
|
48 |
+
self.VCam.send(frame)
|
49 |
+
self.time_last_process = time.perf_counter()
|
50 |
+
|
51 |
+
|
52 |
+
def Close(self):
|
53 |
+
self.Active = False
|
54 |
+
if self.VCam is None:
|
55 |
+
self.VCam.close()
|
56 |
+
self.VCam = None
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
roop-unleashed-main/roop/__init__.py
ADDED
File without changes
|