import os import duckdb import gradio as gr from httpx import Client from huggingface_hub import HfApi import pandas as pd from gradio_huggingfacehub_search import HuggingfaceHubSearch import spaces from llama_cpp import Llama BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co" headers = { "Accept" : "application/json", "Content-Type": "application/json" } client = Client(headers=headers) api = HfApi() llama = Llama( model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048, n_gpu_layers=50 ) @spaces.GPU def generate_sql(prompt): # pred = pipe(prompt, max_length=1000) # return pred[0]["generated_text"] pred = llama(prompt, temperature=0.1, max_tokens=1000) return pred["choices"][0]["text"] def get_first_parquet(dataset: str): resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}") return resp.json()["parquet_files"][0] def text2sql(dataset_name, query_input): print(f"start text2sql for {dataset_name}") try: first_parquet = get_first_parquet(dataset_name) except Exception as error: return { schema_output: "", prompt_output: "", query_output: "", df:pd.DataFrame([{"error": f"❌ Could not get dataset schema. {error=}"}]) } first_parquet_url = first_parquet["url"] print(f"getting schema from {first_parquet_url}") con = duckdb.connect() con.execute("INSTALL 'httpfs'; LOAD httpfs;") # could get from Parquet instead? con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;") result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df() ddl_create = result.iloc[0,0] text = f"""### Instruction: Your task is to generate valid duckdb SQL to answer the following question. ### Input: Here is the database schema that the SQL query will run on: {ddl_create} ### Question: {query_input} ### Response (use duckdb shorthand if possible): """ try: sql_output = generate_sql(text) except Exception as error: return { schema_output: ddl_create, prompt_output: text, query_output: "", df:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {error=}"}]) } # Should be replaced by the prompt but not working sql_output = sql_output.replace("FROM data", f"FROM '{first_parquet_url}'") try: query_result = con.sql(sql_output).df() except Exception as error: query_result = pd.DataFrame([{"error": f"❌ Could not execute SQL query {error=}"}]) finally: con.close() return { schema_output: ddl_create, prompt_output: text, query_output:sql_output, df:query_result } with gr.Blocks() as demo: gr.Markdown("# 💫 Generate SQL queries based on a given text for your Hugging Face Dataset 💫") dataset_name = HuggingfaceHubSearch( label="Hub Dataset ID", placeholder="Search for dataset id on Huggingface", search_type="dataset", value="jamescalam/world-cities-geo", ) # dataset_name = gr.Textbox("jamescalam/world-cities-geo", label="Dataset Name") query_input = gr.Textbox("Cities from Albania country", label="Ask something about your data") examples = [ ["Cities from Albania country"], ["The continent with the most number of countries"], ["Cities that start with 'A'"], ["Cities by region"], ] gr.Examples(examples=examples, inputs=[query_input],outputs=[]) btn = gr.Button("Generate SQL") query_output = gr.Textbox(label="Output SQL", interactive= False) df = gr.DataFrame(datatype="markdown") with gr.Accordion("Open for prompt details", open=False): #with gr.Column(scale=1, min_width=600): schema_output = gr.Textbox(label="Parquet Schema as CREATE DDL", interactive= False) prompt_output = gr.Textbox(label="Generated prompt", interactive= False) btn.click(text2sql, inputs=[dataset_name, query_input], outputs=[schema_output, prompt_output, query_output,df]) demo.launch(debug=True)