# Inspired by https://huggingface.co./spaces/davanstrien/dataset_column_search import os from functools import lru_cache from urllib.parse import quote import faiss import gradio as gr import numpy as np import pandas as pd from dotenv import load_dotenv from httpx import Client from huggingface_hub import HfApi from huggingface_hub.utils import logging from sentence_transformers import SentenceTransformer from tqdm.contrib.concurrent import thread_map load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables" BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co" logger = logging.get_logger(__name__) headers = { "authorization": f"Bearer ${HF_TOKEN}", } client = Client(headers=headers) api = HfApi(token=HF_TOKEN) def get_first_config_name(dataset: str): try: resp = client.get(f"{BASE_DATASETS_SERVER_URL}/splits?dataset={dataset}") data = resp.json() return data["splits"][0]["config"][0] except Exception as e: logger.error(f"Failed to get splits for {dataset}: {e}") return None def datasets_server_valid_rows(dataset: str): try: resp = client.get(f"{BASE_DATASETS_SERVER_URL}/is-valid?dataset={dataset}") return resp.json()["viewer"] except Exception as e: logger.error(f"Failed to get is-valid for {dataset}: {e}") return None def dataset_is_valid(dataset): return dataset if datasets_server_valid_rows(dataset.id) else None def get_first_config_and_split_name(hub_id: str): try: resp = client.get(f"https://datasets-server.huggingface.co/splits?dataset={hub_id}") data = resp.json() return data["splits"][0]["config"], data["splits"][0]["split"] except Exception as e: logger.error(f"Failed to get splits for {hub_id}: {e}") return None def get_dataset_info(hub_id: str, config: str | None = None): if config is None: config = get_first_config_and_split_name(hub_id) if config is None: return None else: config = config[0] resp = client.get(f"{BASE_DATASETS_SERVER_URL}/info?dataset={hub_id}&config={config}") resp.raise_for_status() return resp.json() def dataset_with_info(dataset): try: if info := get_dataset_info(dataset.id): columns = info.get("dataset_info", {}).get("features", {}) if columns is not None: return { "dataset": dataset.id, "column_names": ','.join(list(columns.keys())), "text": f"{dataset.id}-{','.join(list(columns.keys()))}", "likes": dataset.likes, "downloads": dataset.downloads, "created_at": dataset.created_at, "tags": dataset.tags, "text": f"{str(dataset.id).split('/')[-1]}-{','.join(list(columns.keys()))}", } except Exception as e: logger.error(f"Failed to get info for {dataset.id}: {e}") return None @lru_cache(maxsize=100) def prep_data(): datasets = list(api.list_datasets(limit=None, sort="createdAt", direction=-1)) print(f"Found {len(datasets)} datasets in the hub.") has_server = thread_map( dataset_is_valid, datasets, ) datasets_with_server = [x for x in has_server if x is not None] print(f"Found {len(datasets_with_server)} valid datasets.") dataset_infos = thread_map(dataset_with_info, datasets_with_server) dataset_infos = [x for x in dataset_infos if x is not None] print(f"Found {len(dataset_infos)} datasets with info.") return dataset_infos all_datasets = prep_data() all_datasets_df = pd.DataFrame.from_dict(all_datasets) print(all_datasets_df.head()) text = all_datasets_df['text'] encoder = SentenceTransformer("Snowflake/snowflake-arctic-embed-s") vectors = encoder.encode(text) vector_dimension = vectors.shape[1] print("Start indexing") index = faiss.IndexFlatL2(vector_dimension) faiss.normalize_L2(vectors) index.add(vectors) print("Indexing done") def render_model_hub_link(hub_id): link = f"https://huggingface.co./datasets/{quote(hub_id)}" return f'{hub_id}' def search(dataset_name, k): print(f"start search for {dataset_name}") try: dataset_row = all_datasets_df[all_datasets_df.dataset == dataset_name].iloc[0] except IndexError: return pd.DataFrame([{"error": "❌ Dataset does not exist or is not supported"}]) text = dataset_row["text"] search_vector = encoder.encode(text) _vector = np.array([search_vector]) faiss.normalize_L2(_vector) distances, ann = index.search(_vector, k=k) results = pd.DataFrame({"distances": distances[0], "ann": ann[0]}) merge = pd.merge(results, all_datasets_df, left_on="ann", right_index=True) merge["dataset"] = merge["dataset"].apply(render_model_hub_link) return merge.drop("text", axis=1) with gr.Blocks() as demo: gr.Markdown("# Search similar Datasets on Hugging Face") gr.Markdown("This space shows similar datasets based on a name and columns. It uses https://github.com/facebookresearch/faiss for vector indexing.") gr.Markdown("'Text' column was used for indexing. Where text is a concatenation of 'dataset_name'-'column_names'") dataset_name = gr.Textbox("sksayril/medicine-info", label="Dataset Name") k = gr.Slider(5, 200, 20, step=5, interactive=True, label="Top K Nearest Neighbors") btn = gr.Button("Show similar datasets") df = gr.DataFrame(datatype="markdown") btn.click(search, inputs=[dataset_name, k], outputs=df) gr.Markdown("This space was inspired by https://huggingface.co./spaces/davanstrien/dataset_column_search") demo.launch()